Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tests show biotech corn rules need revision

11.05.2004


A corn earworm (Helicoverpa zea) caterpillar damages corn by devouring kernels and spreading green mold (Aspergillus flavus).
Photo credit: Texas A&M University


Biotech corn carrying a gene that confers protection from insects can pollinate corn plants as far as 100 feet (31 meters) away, reports a pair of researchers.

The gene, known as Bt, codes for a toxin that kills corn-munching caterpillars, including European corn borer and corn earworm.

The findings suggest measures are needed to reduce pollen spread from Bt corn to corn fields that should be Bt-free, according to the researchers.



The discovery is important because planting non-Bt corn, which is susceptible to insect attack, near Bt corn delays pest resistance to the Bt toxin. Such fields of non-Bt corn are called refuges.

However, this research indicates a need to revise the current Environmental Protection Agency guidelines for interspersing non-Bt corn with Bt, or transgenic, corn. The gene is from the bacterium called Bt--short for Bacillus thuringiensis.

"It’s the first documentation of gene flow from a transgenic crop into a refuge," said Bruce E. Tabashnik, head of the entomology department at the University of Arizona in Tucson and co-author on the research paper. "This will almost certainly cause a revision of some of the regulations," adding, "I think it’s a problem that once observed, recognized and accepted can be readily overcome."

Tabashnik, who works on the evolution of resistance in insects, was involved in devising the refuge guidelines. Using such biotech crops can reduce the need for chemical insecticides, he said.

"If Bt crops were grown wall-to-wall, everyone would expect resistance in insects to evolve overnight," he said. "The EPA rules say that if you grow Bt corn, you must plant a refuge of non-Bt corn for at least 20 percent of your crop."

Caterpillars that can survive on Bt corn are rare at first, and only a few resistant adult moths emerge from Bt corn fields. But refuges of non-Bt corn produce oodles of susceptible moths. The idea is that the uncommon resistant moths will mate with the more abundant susceptible moths. Their hybrid progeny would be killed by feeding on Bt corn. Thus, Bt resistance would not increase quickly.

Non-Bt corn refuges must be close to Bt corn so Bt-resistant moths will almost certainly mate with only with Bt-susceptible moths from refuges.

Until now, researchers didn’t consider that the Bt and non-Bt corn plants were also close enough to mate, potentially reducing the amount of non-Bt corn in the refuge.

The research article, "Contamination of refuges by Bacillus thuringiensis toxin genes from transgenic maize," will be published the week of May 10 in the online early edition of the Proceedings of the National Academy of Sciences. First author on the paper is Charles F. Chilcutt of Texas A&M University’s Texas Agricultural Research & Extension Center in Corpus Christi. Research support was provided by the University of Arizona and Texas A&M University’s Texas Agricultural Research & Extension Center.

Chilcutt questioned whether pollen from Bt corn moved into refuges when he noticed that ears of white non-Bt corn had some yellow kernels. Yellow kernels meant the plants had been pollinated by yellow, not white, corn. The plot of white corn had been planted near yellow Bt corn.

So he tested those yellow kernels for the Bt toxin and found it in high levels.

To see how far Bt corn pollen could spread, he planted eight rows of Bt corn next to 36 rows of non-Bt corn. The rows were planted 38 inches apart. At the end of the growing season, he took ears from the non-Bt corn and tested them for Bt toxin.

In the first few rows of corn that was supposed to be Bt-free, the ears had almost half as much Bt as the Bt corn. Although corn in more distant rows had less Bt, there was detectable Bt in the ears of corn planted 32 rows away from the plot of Bt corn.

Chilcutt said, "There’s very good chance that if any grower is growing four rows of Bt corn and four rows of non-Bt corn -- 4-4-4-4 -- essentially all the refuge plants could be contaminated."

Current regulations allow such spacing between Bt and non-Bt corn.

He added, "It could increase the speed with which insect populations become resistant to the toxin."

Tabashnik said, "The possibility of toxin production in the refuge plants is something that needs to be incorporated into the science and the regulations."

Because corn is wind-pollinated, refuges could be planted upwind of Bt corn, suggests Tabashnik. Another possibility would be blocking cross-pollination by planting a variety of Bt corn that produces pollen when the non-Bt corn is not receptive.

Tabashnik said, "The problem will take more research to be fully understood, but it’s not catastrophic and can be overcome with relatively minor refinements."

Bruce Tabashnik | University of Arizona
Further information:
http://www.arizona.edu/

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>