Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tobacco plant refuses cowpea mosaic virus

07.05.2004


During research carried out in the Netherlands, Marilia Santos Silva discovered that some tobacco plants die if a virus infects them, whereas others survive.



A virus can quickly and completely infect a plant by spreading through the plant’s vascular system. This is analogous to human viruses spreading through the circulatory system in the human body. Santos Silva discovered that the cowpea mosaic virus could not penetrate the vascular system of some tobacco plants. In the future, researchers want to establish the reason for this.

Plants from the tobacco species Nicotiana benthamiana died when the researchers infected a leaf of the plant with cowpea mosaic virus. However, in a second tobacco species, Nicotiana tabacum, only the infected leaf turned yellow and the rest of the plant remained unharmed.


Viruses spread through a plant in two steps. The first step is from cell to cell within the inoculated leaf. However, as soon as the virus has reached a cell bordering the vascular system of the plant, it can also spread via the vascular system throughout the entire plant. To spread from cell to cell, the virus needs to enlarge existing channels connecting neighbouring cells by building up a tunnel to transport the virus from one cell into the other. This is because the natural channels connecting the cells are too narrow for the virus to pass through.

Viruses spread more quickly through the vascular system than from cell to cell. Santos Silva discovered that the cowpea mosaic virus could even penetrate the vascular system via the existing channel connections without enlarging them.

Up until now, a lack of appropriate technology made it difficult to study how viruses spread through the vascular system of plants. During her research, Santos Silva used a fluorescent protein from a jellyfish. By linking this protein to the virus, she could follow the virus infection through the plant.

In plants infected by the cowpea mosaic virus, the leaves become yellow and rot, and the plant gradually dies. It is estimated that on a worldwide scale, plant viruses cause more than fifty thousand million euros of damage per year. Knowledge about how viruses spread within plants could lead to strategies for obtaining virus-resistant plants.

The research was funded by the Netherlands Organisation for Scientific Research.

Sonja Jacobs | NWO
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOP_5XZET9_Eng

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>