Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tobacco plant refuses cowpea mosaic virus


During research carried out in the Netherlands, Marilia Santos Silva discovered that some tobacco plants die if a virus infects them, whereas others survive.

A virus can quickly and completely infect a plant by spreading through the plant’s vascular system. This is analogous to human viruses spreading through the circulatory system in the human body. Santos Silva discovered that the cowpea mosaic virus could not penetrate the vascular system of some tobacco plants. In the future, researchers want to establish the reason for this.

Plants from the tobacco species Nicotiana benthamiana died when the researchers infected a leaf of the plant with cowpea mosaic virus. However, in a second tobacco species, Nicotiana tabacum, only the infected leaf turned yellow and the rest of the plant remained unharmed.

Viruses spread through a plant in two steps. The first step is from cell to cell within the inoculated leaf. However, as soon as the virus has reached a cell bordering the vascular system of the plant, it can also spread via the vascular system throughout the entire plant. To spread from cell to cell, the virus needs to enlarge existing channels connecting neighbouring cells by building up a tunnel to transport the virus from one cell into the other. This is because the natural channels connecting the cells are too narrow for the virus to pass through.

Viruses spread more quickly through the vascular system than from cell to cell. Santos Silva discovered that the cowpea mosaic virus could even penetrate the vascular system via the existing channel connections without enlarging them.

Up until now, a lack of appropriate technology made it difficult to study how viruses spread through the vascular system of plants. During her research, Santos Silva used a fluorescent protein from a jellyfish. By linking this protein to the virus, she could follow the virus infection through the plant.

In plants infected by the cowpea mosaic virus, the leaves become yellow and rot, and the plant gradually dies. It is estimated that on a worldwide scale, plant viruses cause more than fifty thousand million euros of damage per year. Knowledge about how viruses spread within plants could lead to strategies for obtaining virus-resistant plants.

The research was funded by the Netherlands Organisation for Scientific Research.

Sonja Jacobs | NWO
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>