Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tobacco plant refuses cowpea mosaic virus

07.05.2004


During research carried out in the Netherlands, Marilia Santos Silva discovered that some tobacco plants die if a virus infects them, whereas others survive.



A virus can quickly and completely infect a plant by spreading through the plant’s vascular system. This is analogous to human viruses spreading through the circulatory system in the human body. Santos Silva discovered that the cowpea mosaic virus could not penetrate the vascular system of some tobacco plants. In the future, researchers want to establish the reason for this.

Plants from the tobacco species Nicotiana benthamiana died when the researchers infected a leaf of the plant with cowpea mosaic virus. However, in a second tobacco species, Nicotiana tabacum, only the infected leaf turned yellow and the rest of the plant remained unharmed.


Viruses spread through a plant in two steps. The first step is from cell to cell within the inoculated leaf. However, as soon as the virus has reached a cell bordering the vascular system of the plant, it can also spread via the vascular system throughout the entire plant. To spread from cell to cell, the virus needs to enlarge existing channels connecting neighbouring cells by building up a tunnel to transport the virus from one cell into the other. This is because the natural channels connecting the cells are too narrow for the virus to pass through.

Viruses spread more quickly through the vascular system than from cell to cell. Santos Silva discovered that the cowpea mosaic virus could even penetrate the vascular system via the existing channel connections without enlarging them.

Up until now, a lack of appropriate technology made it difficult to study how viruses spread through the vascular system of plants. During her research, Santos Silva used a fluorescent protein from a jellyfish. By linking this protein to the virus, she could follow the virus infection through the plant.

In plants infected by the cowpea mosaic virus, the leaves become yellow and rot, and the plant gradually dies. It is estimated that on a worldwide scale, plant viruses cause more than fifty thousand million euros of damage per year. Knowledge about how viruses spread within plants could lead to strategies for obtaining virus-resistant plants.

The research was funded by the Netherlands Organisation for Scientific Research.

Sonja Jacobs | NWO
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOP_5XZET9_Eng

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>