Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tropical legume could be alternative hay/forage crop for Texas

07.05.2004


Lablab, a drought-tolerant, summer annual legume native to the tropics, could be a valuable addition to the Texas forage repertoire, according to a Texas Agricultural Experiment Station scientist.


This lablab seed was produced in Texas rather than imported
Credit: Texas A & M University



"An accelerated lablab breeding and evaluation program will start for this summer to provide improved cultivars for both livestock and wildlife management systems in Texas," said Dr. Ray Smith, Experiment Station legume breeder based at the Texas A&M University System Agricultural Research and Extension Center at Overton.

Forage scientists have had lablab on their radar screens for some time. The tropical legume forage can be grazed, cut as hay or grown in mixtures with corn or sorghum and harvested as silage. It can produce nearly 2 tons of dry forage per acre in 100 days with leaf protein content as high as 25 percent. It’s not known how much lablab is grown in the United States, but most seed is currently imported from Australia.


"Lablab has about the same forage production and nutritive value potential as Iron and Clay cowpeas," Smith said. "Compared to bermudagrass, it’s generally going be higher in protein."

But while cattle don’t like cowpeas, they find lablab forage highly palatable. White-tailed deer, which can be picky eaters, will also browse lablab, making it a good, low-management crop for supplemental feed in wildlife plots.

It can be grown in various environments throughout the Southeastern United States and thrive on as little as 10 to 15 inches of rainfall during the growing season. And as do all legumes, lablab can fix nitrogen from the air where forage grasses need supplemental nitrogen. The price of nitrogen fertilizers, tied to the costs of oil and natural gas, is rising. So an alternative high-protein forage legume such as lablab could make sense both economically and environmentally, Smith said.

More importantly, there’s also the possibility of it becoming a value-added seed crop for the region’s farmers, according to Smith. "These characteristics and our experiments with palatability indicated a need to develop new cultivars of lablab that could better tolerate Texas heat and drought," said Smith, who developed Apache, an arrowleaf clover resistant to bean yellow mosaic virus.

Smith, working with Dr. Monte Rouquette, Experiment Station forage physiologist also based at the Overton center, evaluated 42 breeding lines of lablab for regrowth after grazing, relative maturity and seed production potential.

"All entries had excellent regrowth following grazing, but we noted wide differences in time of flowering," Smith said. Flowering time varied from late summer to late fall. In much of Texas, the late-fall flowering varieties would probably mature too late to produce viable seed, he said.

Smith selected the most promising lines and grew them for seed in a greenhouse. From the greenhouse trials, he identified three elite selections for further seed increase.

The three were planted at Vernon in mid-June 2003.

"We planted in Vernon because it is a drier climate. We’re interested in finding an alternative seed crop for Texas growers, and drier, less humid climates are more conducive to producing a higher-quality, disease-free seed crop," Smith explained. Two of the three lines had excellent seed production, and Smith plans to continue evaluating both this year, but he cautions that developing a new variety takes some time.

"It will take three to five years of research to develop a new variety of lablab that will be a useful forage and seed crop," Smith said.


Writer: Robert Burns (903) 834-6191, rd-burns@tamu.edu
Contact: Dr. Ray Smith (903) 834-6191, g-smith@tamu.edu

Robert Burns | EurekAlert!
Further information:
http://agnews.tamu.edu/

More articles from Agricultural and Forestry Science:

nachricht New insight into why Pierce's disease is so deadly to grapevines
11.06.2018 | University of California - Davis

nachricht Where are Europe’s last primary forests?
29.05.2018 | Humboldt-Universität zu Berlin

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>