Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers string together players in pesticide resistance orchestra

05.05.2004


A Purdue University research team has found a set of genes that may orchestrate insects’ ability to fight the effects of pesticides.


Tiny fruit flies are the subjects of Purdue University entomology researcher Barry Pittendrigh’s efforts to discover how insects neutralize the pesticides designed to kill them. He believes that a series of genes are players that orchestrate the biochemical processes involved in pesticide resistance. His study was published in the current issue of Proceedings of the National Academy of Sciences. (Purdue Agricultural Communication photo/Tom Campbell)



"Our study suggests that more than one gene may be involved in making insects resistant to certain pesticides," said Barry Pittendrigh, associate professor of entomology. "Using a music analogy, metabolic resistance may not be a single individual playing a single instrument. It’s more likely a symphony with numerous instruments playing a role in producing the music."

The ultimate aim of the research is to develop methods to prevent insect damage to plants, he said. Results of the initial study are published in the Tuesday (May 4) issue of Proceedings of the National Academy of Sciences.


The scientists looked at approximately 14,000 genes from both metabolically resistant and non-resistant wild-type fruit flies. They identified dozens of genes that were different in resistant fly lines compared to non-resistant wild-type flies, Pittendrigh said. This indicates that a number of genes may be part of the metabolic resistance-causing orchestra, he said.

In metabolic resistance, an organism, in this case an insect, breaks down a toxin that normally might be fatal. Organisms metabolize the toxin or turn it into something that disables the harmful molecules, and then dispose of it.

"We have identified a series of genes that are interesting because the high abundance, or expression, of their genetic traits in resistant flies signifies they may be part of the orchestra that leads to resistance," Pittendrigh said. "But more research must be conducted before we claim whether any of these genes actually cause resistance.

"Another interesting finding that emerged from our study is that a series of genes are common to both resistant insects found in the field and those used in the laboratory. Hypothetically, this could lead to common genes that consistently have the same resistance traits across fly lines or even potentially across insect species."

If further research proves this to be true, these genes might be tools for controlling many different insects, he said.

Joao Pedra, an entomology doctoral student and lead author of the paper, said data from the study suggest that more than one detoxification gene is over-expressed in resistant insects.

"Different resistant fly lines also may have different levels of expression of these genes," Pedra said. "This may affect how resistant they are to a pesticide."

Knowing genes involved in resistance and their relationship to each other would provide scientists with information needed to develop ways to halt insects’ detoxification of chemicals designed to kill them.

"It would be great if we would ultimately identify a ’conductor’ gene that is critical for directing the biochemical processes that allow insects to detoxify pesticides," Pittendrigh said. "A gene or genes that may be critical for resistance, in turn, may become targets, enabling us to develop compounds to control pesticide-resistant insects."

The scientists already have found that some of the genes they’re studying are involved in the process of metabolizing some pesticides, rendering them ineffective.

"We have a relatively firm grasp of target insensitivity - when a toxin will no longer bind with a molecule in an insect so the chemical no longer kills the insect," he said. "But to date, we still don’t understand many aspects of metabolic pesticide resistance.

"Finding genes involved in the fundamental resistance process that also are found across insect species may provide for better resistance monitoring or even resistance management strategies."

One type of bug, the tarnished plant bug, includes two species native to the United States that cause moderate to severe damage to fruits, vegetables, tree seedlings, cotton and alfalfa. The total annual losses and control costs attributed to this one insect are $2.1 billion to $3.5 billion, according to the U.S. Department of Agriculture’s Agricultural Research Service.

Pittendrigh’s team used a recently developed technology to simultaneously look at all the genes in a common research animal, the fruit fly (Drosophila). The technology, high-density micro-array analysis, makes it possible to scan the insect genome and record differences between resistant and susceptible insects.

"Understanding the gene or genes that conduct the metabolic resistance orchestra would give us a way to soften the crescendo of insect damage," Pittendrigh said.

The other researchers involved with this study are: Lauren McIntyre, associate professor in the Department of Agronomy and a member of the Purdue Genomics Center Micro-Array Core Facility, and Michael Scharf, an entomology research specialist, director of the Industrial Affiliates Program and a member of the Purdue Center for Urban and Industrial Pest Management. Pittendrigh and Pedra also are members of the Purdue Molecular Plant Resistance and Nematode Team.

The National Institutes of Health, U.S. Department of Agriculture, Purdue Research Foundation and Department of Entomology provided funds for this study.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu
Sources: Barry Pittendrigh, (765) 494-7730, pittendrigh@purdue.edu
Joao Pedra, (765) 494-6313, jpedra1@purdue.edu
Ag Communications: (765) 494-2722; Beth Forbes, forbes@purdue.edu
Agriculture News Page

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/UNS/html4ever/2004/040504.Pittendrigh.orch.html

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>