Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers string together players in pesticide resistance orchestra

05.05.2004


A Purdue University research team has found a set of genes that may orchestrate insects’ ability to fight the effects of pesticides.


Tiny fruit flies are the subjects of Purdue University entomology researcher Barry Pittendrigh’s efforts to discover how insects neutralize the pesticides designed to kill them. He believes that a series of genes are players that orchestrate the biochemical processes involved in pesticide resistance. His study was published in the current issue of Proceedings of the National Academy of Sciences. (Purdue Agricultural Communication photo/Tom Campbell)



"Our study suggests that more than one gene may be involved in making insects resistant to certain pesticides," said Barry Pittendrigh, associate professor of entomology. "Using a music analogy, metabolic resistance may not be a single individual playing a single instrument. It’s more likely a symphony with numerous instruments playing a role in producing the music."

The ultimate aim of the research is to develop methods to prevent insect damage to plants, he said. Results of the initial study are published in the Tuesday (May 4) issue of Proceedings of the National Academy of Sciences.


The scientists looked at approximately 14,000 genes from both metabolically resistant and non-resistant wild-type fruit flies. They identified dozens of genes that were different in resistant fly lines compared to non-resistant wild-type flies, Pittendrigh said. This indicates that a number of genes may be part of the metabolic resistance-causing orchestra, he said.

In metabolic resistance, an organism, in this case an insect, breaks down a toxin that normally might be fatal. Organisms metabolize the toxin or turn it into something that disables the harmful molecules, and then dispose of it.

"We have identified a series of genes that are interesting because the high abundance, or expression, of their genetic traits in resistant flies signifies they may be part of the orchestra that leads to resistance," Pittendrigh said. "But more research must be conducted before we claim whether any of these genes actually cause resistance.

"Another interesting finding that emerged from our study is that a series of genes are common to both resistant insects found in the field and those used in the laboratory. Hypothetically, this could lead to common genes that consistently have the same resistance traits across fly lines or even potentially across insect species."

If further research proves this to be true, these genes might be tools for controlling many different insects, he said.

Joao Pedra, an entomology doctoral student and lead author of the paper, said data from the study suggest that more than one detoxification gene is over-expressed in resistant insects.

"Different resistant fly lines also may have different levels of expression of these genes," Pedra said. "This may affect how resistant they are to a pesticide."

Knowing genes involved in resistance and their relationship to each other would provide scientists with information needed to develop ways to halt insects’ detoxification of chemicals designed to kill them.

"It would be great if we would ultimately identify a ’conductor’ gene that is critical for directing the biochemical processes that allow insects to detoxify pesticides," Pittendrigh said. "A gene or genes that may be critical for resistance, in turn, may become targets, enabling us to develop compounds to control pesticide-resistant insects."

The scientists already have found that some of the genes they’re studying are involved in the process of metabolizing some pesticides, rendering them ineffective.

"We have a relatively firm grasp of target insensitivity - when a toxin will no longer bind with a molecule in an insect so the chemical no longer kills the insect," he said. "But to date, we still don’t understand many aspects of metabolic pesticide resistance.

"Finding genes involved in the fundamental resistance process that also are found across insect species may provide for better resistance monitoring or even resistance management strategies."

One type of bug, the tarnished plant bug, includes two species native to the United States that cause moderate to severe damage to fruits, vegetables, tree seedlings, cotton and alfalfa. The total annual losses and control costs attributed to this one insect are $2.1 billion to $3.5 billion, according to the U.S. Department of Agriculture’s Agricultural Research Service.

Pittendrigh’s team used a recently developed technology to simultaneously look at all the genes in a common research animal, the fruit fly (Drosophila). The technology, high-density micro-array analysis, makes it possible to scan the insect genome and record differences between resistant and susceptible insects.

"Understanding the gene or genes that conduct the metabolic resistance orchestra would give us a way to soften the crescendo of insect damage," Pittendrigh said.

The other researchers involved with this study are: Lauren McIntyre, associate professor in the Department of Agronomy and a member of the Purdue Genomics Center Micro-Array Core Facility, and Michael Scharf, an entomology research specialist, director of the Industrial Affiliates Program and a member of the Purdue Center for Urban and Industrial Pest Management. Pittendrigh and Pedra also are members of the Purdue Molecular Plant Resistance and Nematode Team.

The National Institutes of Health, U.S. Department of Agriculture, Purdue Research Foundation and Department of Entomology provided funds for this study.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu
Sources: Barry Pittendrigh, (765) 494-7730, pittendrigh@purdue.edu
Joao Pedra, (765) 494-6313, jpedra1@purdue.edu
Ag Communications: (765) 494-2722; Beth Forbes, forbes@purdue.edu
Agriculture News Page

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/UNS/html4ever/2004/040504.Pittendrigh.orch.html

More articles from Agricultural and Forestry Science:

nachricht Light green plants save nitrogen without sacrificing photosynthetic efficiency
21.11.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Filling intercropping info gap
16.11.2017 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>