Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers string together players in pesticide resistance orchestra


A Purdue University research team has found a set of genes that may orchestrate insects’ ability to fight the effects of pesticides.

Tiny fruit flies are the subjects of Purdue University entomology researcher Barry Pittendrigh’s efforts to discover how insects neutralize the pesticides designed to kill them. He believes that a series of genes are players that orchestrate the biochemical processes involved in pesticide resistance. His study was published in the current issue of Proceedings of the National Academy of Sciences. (Purdue Agricultural Communication photo/Tom Campbell)

"Our study suggests that more than one gene may be involved in making insects resistant to certain pesticides," said Barry Pittendrigh, associate professor of entomology. "Using a music analogy, metabolic resistance may not be a single individual playing a single instrument. It’s more likely a symphony with numerous instruments playing a role in producing the music."

The ultimate aim of the research is to develop methods to prevent insect damage to plants, he said. Results of the initial study are published in the Tuesday (May 4) issue of Proceedings of the National Academy of Sciences.

The scientists looked at approximately 14,000 genes from both metabolically resistant and non-resistant wild-type fruit flies. They identified dozens of genes that were different in resistant fly lines compared to non-resistant wild-type flies, Pittendrigh said. This indicates that a number of genes may be part of the metabolic resistance-causing orchestra, he said.

In metabolic resistance, an organism, in this case an insect, breaks down a toxin that normally might be fatal. Organisms metabolize the toxin or turn it into something that disables the harmful molecules, and then dispose of it.

"We have identified a series of genes that are interesting because the high abundance, or expression, of their genetic traits in resistant flies signifies they may be part of the orchestra that leads to resistance," Pittendrigh said. "But more research must be conducted before we claim whether any of these genes actually cause resistance.

"Another interesting finding that emerged from our study is that a series of genes are common to both resistant insects found in the field and those used in the laboratory. Hypothetically, this could lead to common genes that consistently have the same resistance traits across fly lines or even potentially across insect species."

If further research proves this to be true, these genes might be tools for controlling many different insects, he said.

Joao Pedra, an entomology doctoral student and lead author of the paper, said data from the study suggest that more than one detoxification gene is over-expressed in resistant insects.

"Different resistant fly lines also may have different levels of expression of these genes," Pedra said. "This may affect how resistant they are to a pesticide."

Knowing genes involved in resistance and their relationship to each other would provide scientists with information needed to develop ways to halt insects’ detoxification of chemicals designed to kill them.

"It would be great if we would ultimately identify a ’conductor’ gene that is critical for directing the biochemical processes that allow insects to detoxify pesticides," Pittendrigh said. "A gene or genes that may be critical for resistance, in turn, may become targets, enabling us to develop compounds to control pesticide-resistant insects."

The scientists already have found that some of the genes they’re studying are involved in the process of metabolizing some pesticides, rendering them ineffective.

"We have a relatively firm grasp of target insensitivity - when a toxin will no longer bind with a molecule in an insect so the chemical no longer kills the insect," he said. "But to date, we still don’t understand many aspects of metabolic pesticide resistance.

"Finding genes involved in the fundamental resistance process that also are found across insect species may provide for better resistance monitoring or even resistance management strategies."

One type of bug, the tarnished plant bug, includes two species native to the United States that cause moderate to severe damage to fruits, vegetables, tree seedlings, cotton and alfalfa. The total annual losses and control costs attributed to this one insect are $2.1 billion to $3.5 billion, according to the U.S. Department of Agriculture’s Agricultural Research Service.

Pittendrigh’s team used a recently developed technology to simultaneously look at all the genes in a common research animal, the fruit fly (Drosophila). The technology, high-density micro-array analysis, makes it possible to scan the insect genome and record differences between resistant and susceptible insects.

"Understanding the gene or genes that conduct the metabolic resistance orchestra would give us a way to soften the crescendo of insect damage," Pittendrigh said.

The other researchers involved with this study are: Lauren McIntyre, associate professor in the Department of Agronomy and a member of the Purdue Genomics Center Micro-Array Core Facility, and Michael Scharf, an entomology research specialist, director of the Industrial Affiliates Program and a member of the Purdue Center for Urban and Industrial Pest Management. Pittendrigh and Pedra also are members of the Purdue Molecular Plant Resistance and Nematode Team.

The National Institutes of Health, U.S. Department of Agriculture, Purdue Research Foundation and Department of Entomology provided funds for this study.

Writer: Susan A. Steeves, (765) 496-7481,
Sources: Barry Pittendrigh, (765) 494-7730,
Joao Pedra, (765) 494-6313,
Ag Communications: (765) 494-2722; Beth Forbes,
Agriculture News Page

Susan A. Steeves | Purdue News
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>