Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A cushion of air trapped under the rice fields of Senegal

30.04.2004


Irrigation by surge flooding, a technique used essentially in rice cropping, involves the input of large volumes of water. In some regions, this water does not infiltrate to any depth. Poor infiltration like this can cause severe loss in soil quality and harm crops. Recent investigations on such a situation in a rice field in the River Senegal valley, involving water budget monitoring for 100 days, the length of a cropping season, have confirmed a lack of water infiltration below 40 cm depth. Scientists from the IRD and Pernambuco Federal University of Brazil jointly conducted the project. Mathematical models revealed that air, trapped in dry soil owing to the clay content, is confined and compressed between the wetting front which progresses from the surface and the water table below. The resulting cushion of air creates a blockage, slowing down then stopping the water’s filtration deeper into the soil. This investigation offers new lines of approach that might explain intense salinization of the soil that occurs in some regions of the world.



Rice cultivation uses great volumes of water, especially where the submerged-field method involving surge flooding irrigation is practised. Maintenance of a layer of water on the soil surface throughout the cropping period usually favours its infiltration deeper down. However, it has been known for many years that in some regions water often does not reach deep into the soil. This unusual feature, poorly understood up to now, becomes a problem in rice fields in arid areas because it can have harmful effects. Although from one point of view it conserves a mass of water, in that flow does not penetrate too deeply and remains entirely available for the rice to grow, it can lead to soil quality loss. Absence of infiltration lets mineral salts accumulate in the root zone, and an intense salinization sets in. That process can generate hydraulic stress which acts on the plants, limiting their growth or even killing them.

How can such a low rate of drainage be explained? An IRD team from research unit 67-ARIANE Les sols cultivés à fortes contraintes physico-chimiques des régions chaudes, working jointly with a Brazilian researcher (1), determined the water budget in rice farmers’ plots in the River Senegal valley. They employed mathematical models to define the water-flow events in the soil.


The rice fields, located on clayey soils, were situated above a water table lying at between 1.50 and 2 m depth. The research team quantified water input and output throughout the cropping period, about 100 days. Most of the water input to the plot was consumed by the plant and the average infiltration rate was extremely low (below 0.1 mm/day). In order to obtain a more precise water budget, measurements were made of the soil water tension and capillary pressure, the water content profiles and the water table depth. These measurements showed that the water brought in by irrigation hardly filters down at all beyond 40 cm depth below the surface. A zone exists between 40 and 50 cm depth which does not become saturated during the cropping season. Moreover, calculations of the infiltration flux confirming the measured values at plot level indicated that the water table was essentially fed by leakage from the bed of the irrigation canal and not by infiltration of water from the s! urface layer.

These results prompted the research team to suggest the presence of an isolating body of air under the rice fields. This hypothesis was rapidly confirmed using digital models. Up to now, most soil water transfer models, such as Hydrus, considered that air escaped freely and did not affect the water infiltration. This theory, valid for many situations in the field, proved not to be so in the case under investigation. A model taking the presence of air into account showed the entrapment of air contained in the soil between two wet fronts: the wetting front of water infiltrating from above and the water table deeper down. This air under compression appears to inhibit downward penetration of water in that the air has to leave the soil pores if the water is to enter and take its place.

The great quantities of water pushed into the rice fields are therefore almost completely consumed by the crop plants. The lack of drainage at depth means that there no leaching occurs and salts are not diluted. Air entrapment is probably a feature common to all irrigated rice-growing areas on clayey soils throughout the world. This phenomenon could explain the extensive salinization affecting the North-East Thailand rice fields. Investigations are soon to be conducted there to quantify the influence of air entrapment on water budgets and salt levels. Eventually, cultivation practices that can overcome poor drainage and salt accumulation could be developed.



(1) The partners involved in this research work carried out in Senegal belong to the Federal University of Pernambuco in Brazil (A.C.D. Antonino of the Department of Nuclear Energy), and to IRD (P. Boivin, C. Hammecker and J.L. Maeght from research unit UR 67)


FOR FURTHER INFORMATION

Contact: Claude Hammecker – IRD UR 067 " Les sols cultivés à fortes contraintes physico-chimiques des régions chaudes " - 300 avenue Emile Jeanbreau, 34095 Montpellier cedex ? France. Tel.: +33 (0) 4 67 14 90 28. Fax.: +33 (0) 4 67 14 90 68. Email: Claude.Hammecker@msem.univ-montp2.fr

Contact IRD Communication: Bénédicte Robert (press officer), Tel.: +33 (0)1 48 03 75 19, Email:presse@paris.ird.fr

Reference:
C. Hammecker, A.C.D. Antonino, J.L. Maeght, P. Boivin, 2003 - Experimental and numerical study of water flow in soil under irrigation in northern Senegal: evidence of entrapment, European journal of soil science, vol. 54, n°3, pages 491-503 (13).

To obtain illustrations concerning this research
Contact Indigo Base, IRD picture library, Claire Lissalde or Danièle Cavanna, Tel.: +33 (0)1 48 03 78 99, Email: indigo@paris.ird.fr

Bénédicte Robert | IRD
Further information:
http://www.ird.fr/us/actualites/fiches/2004/199.htm

More articles from Agricultural and Forestry Science:

nachricht Filling intercropping info gap
16.11.2017 | American Society of Agronomy

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Heavy nitrogen molecules reveal planetary-scale tug-of-war

20.11.2017 | Earth Sciences

Taking a spin on plasma space tornadoes with NASA observations

20.11.2017 | Physics and Astronomy

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>