Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helping Tomatoes Cope With Stress May Be Good For Us

26.04.2004


Scientists at the John Innes Centre (JIC)and Institute of Food Research (IFR), Norwich, have today reported the discovery and use of a gene that may help protect plants and humans against disease. The gene (HQT) was identified in tomato and is responsible for producing an antioxidant called chlorogenic acid (CGA).

By increasing the activity of HQT, the scientists raised the levels of CGA in the tomato fruits and this helped protect them against attack from bacterial disease. CGA could also protect humans eating the tomatoes against degenerative, age-related diseases. This report is published online on 25 April in Nature Biotechnology and will be available in the June 2004 hard copy journal.

“Our tomatoes are doubly special” said Dr Cathie Martin (project leader at JIC). “They not only protect themselves against disease, but may benefit humans that eat them by protecting against age-related diseases. For us the excitement is that this adds to our understanding of how plants naturally protect themselves against stress and diseases, but in the long term it may be that this discovery leads to fruits that are better for us”.



The research team were interested in CGA because it is known to be an important antioxidant in both plants and animals. The biochemical pathway that plants use to make CGA was unknown, but a bit of biological detective work led the team to the likely pathway. When experiments confirmed their prediction, they were able to isolate one of the key genes (called HQT) for making CGA. When they suppressed the activity of the HQT gene (using gene silencing) they found that CGA levels in developing tomato fruits fell. The reverse happened when they increased the activity of HQT.

Antioxidants protect against the effects of stress and disease. To test whether higher levels of CGA give added protection the scientists infected the high CGA tomatoes with bacteria that cause tomato blight (Pseudomonas syringae). In the high CGA plants the effect and spread of the disease was significantly less than in the unmodified plants. Similarly, when the plants were tested for resistance to oxidative stress the high CGA plants were more resistant to stress damage than the unmodified plants.

“This research has highlighted for me the incredible ingenuity of plants in coping with their environment”, said Dr Tony Michael (Project Leader at IFR). “Plants possess a whole repertoire of genes involved in producing protective compounds. CGA is the main polyphenol in this category in tomatoes. Now we have identified the gene for the enzyme that produces it, we can look for genes that produce similar compounds in other plants, with benefits for agriculture and for human nutrition”.

The Intellectual Property Rights associated with this discovery are assigned to Plant Bioscience Ltd.

Ray Mathias | alfa
Further information:
http://www.jic.bbsrc.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>