Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disease threatens cucumbers, pumpkins, and other vine crops

26.04.2004


Plant pathologists with The American Phytopathological Society (APS) are reporting a significant increase in the occurrence of Phytophthora blight of vine crops, including cucumbers, pumpkins, and squash, in many vegetable-growing regions of the United States. This devastating disease, caused by a soilborne pathogen called Phytophthora capsici, often results in nearly total yield loss.

According to Mohammad Babadoost, a plant pathology professor at the University of Illinois, Phytophthora blight has become one of the most serious threats to production of vine crops, or cucurbits, both in the United States and worldwide. "Recent outbreaks of Phytophthora blight have threatened pumpkin and other cucurbit industries in Illinois, where approximately 90 percent of processing pumpkins produced in the U.S. are grown," said Babadoost. "Because of heavy crop losses, growers often have to abandon their own farms and move into different areas, sometimes traveling more than 50 miles, to find fields not infested with Phytophthora capsici," said Babadoost.

Phytophthora blight can strike cucurbit plants at any stage of growth. The infection usually appears first in low areas of the fields where the soil remains wet for longer periods of time. The pathogen infects seedlings, vines, leaves, and fruit. The disease is usually associated with heavy rainfall, excessive-irrigation, or poorly drained soil. Frequent irrigation increases the incidence of the disease.



Currently, there are no cucurbit cultivars with measurable resistance to Phytophthora blight. Plant pathologists are working to find new methods of controlling this disease. "In addition to exploring cultural management strategies, plant pathologists are assessing the possibilities of using induced resistance in plants, biocontrol agents, and fungicides for control of this disease in cucurbits and other crops," said Babadoost.

More on this subject including details on the disease, the pathogen that causes it, and current control methods can be found in this month’s APS feature article at www.apsnet.org/online/feature/cucurbit/. The American Phytopathological Society (APS) is a non-profit, professional scientific organization dedicated to the study and management of plant disease with 5,000 members worldwide.

Amy Steigman | EurekAlert!
Further information:
http://www.apsnet.org/

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>