Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could seaweed clean up DDT?

14.04.2004


Adding small amounts of seaweed to contaminated soil could prove to be a natural and effective way of breaking down the toxic pesticide DDT, according to new research in the Journal of Chemical Technology and Biotechnology. A British biologist, Ian Singleton, worked with colleagues in Australia and Thailand to find the right formula to use. Too much seaweed hindered biodegradation, but the most effective mix – 0.5% seaweed added to waterlogged soil – managed to remove 80% of the DDT present over six weeks, lowering the levels of DDT enough to pass Australian Environment Protection Authority criteria.

Why it is necessary

Although DDT is banned in most of the industrial world, it is one of the most effective anti-mosquito agents available. Twenty five countries, including South Africa, still use it in the fight against malaria, despite strong opposition from environmental groups. If DDT could be more quickly broken down after use, the overall health benefits to countries with big malaria problems could be enormous.



Why it works

The initial breakdown of DDT depends on particular microbes that function best anaerobically (without oxygen). The researchers used waterlogged soil to encourage the anaerobic microbes. Seaweed is a good source of sodium, which in low concentrations “significantly enhances” the microbes’ breakdown of DDT. Sodium disperses soil, thus exposing DDT to microbes; it also affects the amount of dissolved organic carbon in the soil, which in turn makes a difference to the way organisms access the contaminants. When too much seaweed is used, the dissolved carbon and excess sodium gets in the way of the process.

The authors suggest that the seaweed method “has potential” in accelerating DDT clean-up: “it would work best in small areas where DDT has been accidentally spilled or added to soil rather than being applied on a large scale, as the process has to be controlled and monitored.”

Rosamund Snow | alfa
Further information:
http://interscience.wiley.com/jctb

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>