Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Could seaweed clean up DDT?


Adding small amounts of seaweed to contaminated soil could prove to be a natural and effective way of breaking down the toxic pesticide DDT, according to new research in the Journal of Chemical Technology and Biotechnology. A British biologist, Ian Singleton, worked with colleagues in Australia and Thailand to find the right formula to use. Too much seaweed hindered biodegradation, but the most effective mix – 0.5% seaweed added to waterlogged soil – managed to remove 80% of the DDT present over six weeks, lowering the levels of DDT enough to pass Australian Environment Protection Authority criteria.

Why it is necessary

Although DDT is banned in most of the industrial world, it is one of the most effective anti-mosquito agents available. Twenty five countries, including South Africa, still use it in the fight against malaria, despite strong opposition from environmental groups. If DDT could be more quickly broken down after use, the overall health benefits to countries with big malaria problems could be enormous.

Why it works

The initial breakdown of DDT depends on particular microbes that function best anaerobically (without oxygen). The researchers used waterlogged soil to encourage the anaerobic microbes. Seaweed is a good source of sodium, which in low concentrations “significantly enhances” the microbes’ breakdown of DDT. Sodium disperses soil, thus exposing DDT to microbes; it also affects the amount of dissolved organic carbon in the soil, which in turn makes a difference to the way organisms access the contaminants. When too much seaweed is used, the dissolved carbon and excess sodium gets in the way of the process.

The authors suggest that the seaweed method “has potential” in accelerating DDT clean-up: “it would work best in small areas where DDT has been accidentally spilled or added to soil rather than being applied on a large scale, as the process has to be controlled and monitored.”

Rosamund Snow | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>