Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Transformation of heated meat substitutes is unpredictable


Researchers in the Netherlands have investigated the molecular structure of plant proteins that must provide alternatives for the animal proteins in our food over the next 10 years. They discovered that proteins with a similar chemical structure behaved differently after heating. The behaviour of the proteins after heating plays an important role in the development of a new type of meat substitute product.

Francesca O’Kane used various proteins from peas and soya for her research. After heating the plant proteins formed a gel from which she could deduce the structure of the proteins after heating. Although the pea protein legumin has a structure which is very similar to the soya protein glycinin, O’Kane discovered clear differences between the two proteins after heating. The gel of the soya protein could be repeatedly heated without the gel losing its strength or flexibility. This was not possible with the pea protein gel, due to its unusual spatial structure. Upon repeated heating this gel became increasingly stiff.

The greatest stumbling block in the design of foodstuffs using non-animal proteins is the unpredictability of the final product’s structure, the so-called texture. O’Kane used several proteins from peas to map the behaviour of plant proteins. She followed the molecular structure of the proteins in three stages: the unfolding during heating, the aggregation after heating and the eventual formation of a network, in which the proteins formed a gel. The formation of the gel provides a model for how proteins aggregate.

In the future, the researchers want to establish whether the behaviour of proteins from peas at the molecular level also takes place on a larger scale. In addition to this they are investigating the interactions of proteins with other food components. It will then be possible to understand how the texture of meat substitute products changes upon heating, and more importantly, it will be possible to predict this in advance.

The research is part of the NWO research programme ’Protein Foods, Environment, Technology and Society’ (Profetas). This programme is examining the possibilities for a fundamental shift in our diet. Researchers from various disciplines are investigating whether the substitution of meat by foodstuffs based on plant proteins is favourable for the environment. They are also investigating whether these changes are technologically and socially feasible.

The research was funded by the Netherlands Organisation for Scientific Research.

Sonja Jacobs | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>