Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transformation of heated meat substitutes is unpredictable

14.04.2004


Researchers in the Netherlands have investigated the molecular structure of plant proteins that must provide alternatives for the animal proteins in our food over the next 10 years. They discovered that proteins with a similar chemical structure behaved differently after heating. The behaviour of the proteins after heating plays an important role in the development of a new type of meat substitute product.

Francesca O’Kane used various proteins from peas and soya for her research. After heating the plant proteins formed a gel from which she could deduce the structure of the proteins after heating. Although the pea protein legumin has a structure which is very similar to the soya protein glycinin, O’Kane discovered clear differences between the two proteins after heating. The gel of the soya protein could be repeatedly heated without the gel losing its strength or flexibility. This was not possible with the pea protein gel, due to its unusual spatial structure. Upon repeated heating this gel became increasingly stiff.

The greatest stumbling block in the design of foodstuffs using non-animal proteins is the unpredictability of the final product’s structure, the so-called texture. O’Kane used several proteins from peas to map the behaviour of plant proteins. She followed the molecular structure of the proteins in three stages: the unfolding during heating, the aggregation after heating and the eventual formation of a network, in which the proteins formed a gel. The formation of the gel provides a model for how proteins aggregate.



In the future, the researchers want to establish whether the behaviour of proteins from peas at the molecular level also takes place on a larger scale. In addition to this they are investigating the interactions of proteins with other food components. It will then be possible to understand how the texture of meat substitute products changes upon heating, and more importantly, it will be possible to predict this in advance.

The research is part of the NWO research programme ’Protein Foods, Environment, Technology and Society’ (Profetas). This programme is examining the possibilities for a fundamental shift in our diet. Researchers from various disciplines are investigating whether the substitution of meat by foodstuffs based on plant proteins is favourable for the environment. They are also investigating whether these changes are technologically and socially feasible.

The research was funded by the Netherlands Organisation for Scientific Research.

Sonja Jacobs | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOP_5XKJ76_Eng

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>