Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transformation of heated meat substitutes is unpredictable

14.04.2004


Researchers in the Netherlands have investigated the molecular structure of plant proteins that must provide alternatives for the animal proteins in our food over the next 10 years. They discovered that proteins with a similar chemical structure behaved differently after heating. The behaviour of the proteins after heating plays an important role in the development of a new type of meat substitute product.

Francesca O’Kane used various proteins from peas and soya for her research. After heating the plant proteins formed a gel from which she could deduce the structure of the proteins after heating. Although the pea protein legumin has a structure which is very similar to the soya protein glycinin, O’Kane discovered clear differences between the two proteins after heating. The gel of the soya protein could be repeatedly heated without the gel losing its strength or flexibility. This was not possible with the pea protein gel, due to its unusual spatial structure. Upon repeated heating this gel became increasingly stiff.

The greatest stumbling block in the design of foodstuffs using non-animal proteins is the unpredictability of the final product’s structure, the so-called texture. O’Kane used several proteins from peas to map the behaviour of plant proteins. She followed the molecular structure of the proteins in three stages: the unfolding during heating, the aggregation after heating and the eventual formation of a network, in which the proteins formed a gel. The formation of the gel provides a model for how proteins aggregate.



In the future, the researchers want to establish whether the behaviour of proteins from peas at the molecular level also takes place on a larger scale. In addition to this they are investigating the interactions of proteins with other food components. It will then be possible to understand how the texture of meat substitute products changes upon heating, and more importantly, it will be possible to predict this in advance.

The research is part of the NWO research programme ’Protein Foods, Environment, Technology and Society’ (Profetas). This programme is examining the possibilities for a fundamental shift in our diet. Researchers from various disciplines are investigating whether the substitution of meat by foodstuffs based on plant proteins is favourable for the environment. They are also investigating whether these changes are technologically and socially feasible.

The research was funded by the Netherlands Organisation for Scientific Research.

Sonja Jacobs | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOP_5XKJ76_Eng

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>