Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impact of agricultural activity on water resources in Navarre

06.04.2004


A group of researchers at the Navarre Public University, together with technical experts from the Navarre Provincial Government, are evaluating the impact of agricultural activity on water resources, based on a Net of Experimental Catchment Areas that the Provincial Administration has installed in several areas of Navarre.



To put this project into effect, the Agricultural Non Point Source Pollution method is being used; AGNPS is a technology which has been developed by the Department of Agriculture of the United States, a body with which the researchers at the Navarre Public University have signed a joint working agreement.

Three Experimental Catchment Areas in Navarre


Obtaining sustainable development is the evermore present objective in society. Agricultural activity is part and parcel of this, given that it has a significant impact on the environment, including, obviously, water resources. From the preliminary studies carried out by the Navarre Government Agriculture Department over more than 20 years, it is known that in Navarre there exist problems of water erosion accelerated by human activity. Once this situation was checked and its extent verified, the need to quantify the problem was tackled.

To this end, in 1994, the Navarre Government began to Net of Experimental Agricultural Catchment Areas representative of the most relevant usage and management of water resources in the Provincial Community. Currently this Net consists of three Catchment Areas: Latxaga, La Tejería and Oskotz. The first two are representative of the semiarid cereal crop conditions of the Midlands Zone of Navarre, where there is an attempt to identify problems of shifting earth together with other problems of normal agricultural activity such as contamination by agricultural chemicals. Later on in the study we looked for more humid terrain, where we could investigate the impact of pastoral farming. Moreover, to complete the research, a further type of representative catchment area is studied. For example, a vine-growing area in the south and another under irrigation, which would be representative, respectively, of Midlands Navarre and the Ribera (the Ebro river basin).

Each one of these catchment areas has a complete automatic meteorological station with data registration storage every ten minutes (various totaliser pluviometers) and one or two capacity measurement stations in which, apart from registering capacity data every ten minutes, information on water quality is registered, through taking samples of the water deposits.

The general aim is to collect, store and analyse data of the first estimates of soil loss in crop cultivation areas as well as the impact of agriculture on the quality of runoff. But also we have followed the technique suggested by the Navarre Department of Agriculture involving the need to interpret this data and draw conclusions that enable us to obtain information about the processes and tendencies over larger areas, over longer time periods and about the responses of the systems under different conditions. This is where the researchers from the Navarre Public University came in.

Models of cutting edge technology

Although there are numerous models capable of simulating the hydrological behaviour of water catchment areas – for different ends and these can be useful for understanding the cause-effect relationships amongst these -, the AGNPS model is one of the most complete and powerful tools for the study of hydrological, contaminant and erosive effects derived from agricultural and forestry activity.

The model is a distributive one which operates on an on-going, daily basis and which was developed in order to simulate the long-term transport of sediments and agricultural chemicals in large, unmonitored agricultural basins. The generation and circulation of runoff water and the transport of sediments, nutrients and pesticides are its fundamental components. It is model which enables the definition in a detailed manner of the characteristics of each zone within the catchment area or basin being studied, as it splits this up in more or less homogeneous areas (cells), connected to the drainage network. AGNPS measures and records the amount of runoff water and contaminants provided by each cell to the exutoria of the catchment area, which helps management personnel to identify these problem areas, thus enabling them to concentrate on corrective action more efficaciously.

Finally, we should take into account that, in the United States, the AGNPS model is currently a practical application tool, the results will be transmitted to the relevant bodies with the aim of deciding on possible lines of work regarding the better use and management of terrain, based on the experimental data and the simulations carried out.

Iñaki Casado Redin | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=443&hizk=I
http://www.unavarra.es

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>