Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Identifies Pathogen Strain Responsible for Irish Potato Famine

19.03.2004


North Carolina State University plant pathologist Jean Beagle Ristaino shocked the scientific world when she published a paper in the journal Nature that called into question the then-prevailing theories about the strain of pathogen – and its place of origin – that caused the Irish potato famine in the 1840s.


Specimen of potato infected with Phytophthora infestans collected by John Lindley in 1846 at the Royal Botanic Garden, Dublin, Ireland.



Using DNA fingerprinting analysis of 150-year-old leaves – evidence that had not previously been studied – Ristaino ruled out the longtime prime suspect behind the famine: the Ib haplotype, or strain, of the late-blight pathogen Phytophthora infestans, which was presumed to have originated in Mexico.

Now, in a new study, Ristaino and postdoctoral student Kim May point the finger at the Ia strain of P. infestans, and trace its probable roots to the Andes Mountains in South America.


The study will be published in the April 2004 edition of Mycological Research.

The researchers used DNA sequences from mitochondrial DNA to examine 186 specimens from six different regions of the world dating from as early as 1845 to as late as 1982. The specimens included ones from late-blight epidemics in Ireland, the United States and continental Europe, and came from collections housed in England, Ireland and the United States.

About 90 percent of the specimens were confirmed to be infected with P. infestans, the paper reports. About 86 percent of the specimens – including those involved in major epidemics in Ireland and other locations around the globe – were infected with the Ia haplotype of P. infestans. The Ib haplotype – the one previously presumed to be the culprit behind the Irish potato famine and other epidemics before Ristaino’s groundbreaking 2001 study – was present only in more modern samples from Central and South America.

Moreover, the researchers found two strains – Ia and IIb – in potato specimens studied from 1950s Nicaragua. This finding further debunks the single-strain theory that prevailed before Ristaino’s 2001 Nature paper.

Ristaino’s lab is currently investigating the center of origin of P. infestans. She hypothesizes that the pathogen originated in South America and perhaps made its way to Europe and the United States via exports of potato seed on steamships. The data to support this hypothesis will be published by one of Ristaino’s graduate students, Luis Gomez, in the next year.

There are four haplotypes of P. infestans – Ia, Ib, IIa and IIb – which is a fungus-like pathogen that causes severe lesions on leaves of potato and tomato plants.

The late-blight pathogen led to the Irish potato famine, which killed or displaced millions of Irish people, and other epidemics across the world. Late blight continues to wreak havoc as a major potato and tomato killer, which makes Ristaino’s research all the more important.

“If we can understand the strains of P. infestans that are out there now and see how the pathogen has evolved over time – including how it mutates in response to fungicides or host resistance – we’ll better be able to manage the disease,” Ristaino said.

The research is funded by the National Geographic Society, the USDA National Research Initiatives Cooperative Grants Program, the North Carolina State Agricultural Research Service and NC State’s International Programs Office.

Mick Kulikowski, | NC State University
Further information:
http://www.ncsu.edu/news/press_releases/04_03/109.htm

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>