Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using soils as filters to prevent ’crypto’ from moving to the groundwater

01.03.2004


A study published in the Vadose Zone Journal examines how different soil types affect Cryptosporidium parvum’s transport.



Groundwater is generally considered a safe source of drinking water because pathogens are presumably filtered out during their transport through unsaturated soils. Nevertheless, pathogen-contaminated groundwater has been the cause of many disease outbreaks in the last 10 years including cryptosporidiosis caused by the protozoan pathogen Cryptosporidium parvum. Standard chlorine disinfection is not effective at killing the pathogen.

Although several "crypto" outbreaks have occurred in the U.S., the most severe problem is in Africa where both the sanitary conditions are poor and a significant portion of the population has HIV. It is especially dangerous for people with a compromised immune system because it can lead to severe diarrhea and lethal dehydration. the most notable being a cholera epidemic in London in 1854.


A study published in the February 2004 issue of Vadose Zone Journal, which was funded by the USDA-National Research Initiative program and performed at Cornell University Department of Biological and Environmental Engineering, examines how C. parvum oocysts may be transported via preferential flow to groundwater.

A simulation model was developed on the basis of an existing preferential flow model. Column experiments with sandy and undisturbed structured soils were performed. Calf manure with cryptosporidiosis was applied to the columns soil surface, followed by rain. Chloride was also added as a tracer.

"Traditionally, people assume that soils filter out pathogens. This is based upon the premise that water and pathogens move slowly through all of the soil. We found that for sandy soil, where water moved rapidly through, there was indeed very little filtering initially. Surprisingly, the undisturbed, structured columns with large macropores had only a very limited breakthrough," said Tammo Steenhuis, Cornell University, who was one of the researchers of the study.

Although this study shows that the pathogen could enter the groundwater easily at certain levels, the experiments were carried out by designing transport-enhancing, worst-case conditions consisting of infected fresh manure spread shortly before a major rainstorm on a coarse sandy soil with a short distance to ground water. Contamination is much less likely to occur when conditions are not as extreme, for example when manure is dry before the rainfall starts or when the groundwater is not as shallow.


Online subscribers can access the full article; nonsubscribers can access the abstract, or pay a $10 per-article fee, or buy a $25, 14-day site pass, at: http://vzj.scijournals.org/cgi/content/abstract/3/1/262.

Vadose Zone Journal, www.vadosezonejournal.org, is an electronic, peer-reviewed, international publication published by the Soil Science Society of America (SSSA), with the Geological Society of America as cooperator. The research and assessment needs of the vadose zone have grown in response to the pressure of increasing human impacts, prompting this new publication for a diverse range of scientists and engineers. The mission of the Vadose Zone Journal is to disseminate information about the physical, chemical, and biological processes operating in this zone and to facilitate science-based decision making and sustainable management of the vadose zone.

The American Society of Agronomy (ASA) www.agronomy.org, the Crop Science Society of America (CSSA) www.crops.org and the Soil Science Society of America (SSSA) www.soils.org are educational organizations helping their 10,000+ members advance the disciplines and practices of agronomy, crop and soil sciences by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://vzj.scijournals.org/cgi/content/abstract/3/1/262
http://www.vadosezonejournal.org
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht Faba fix for corn's nitrogen need
11.04.2018 | American Society of Agronomy

nachricht Wheat research discovery yields genetic secrets that could shape future crops
09.04.2018 | John Innes Centre

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Scientists re-create brain neurons to study obesity and personalize treatment

20.04.2018 | Health and Medicine

Spider silk key to new bone-fixing composite

20.04.2018 | Materials Sciences

Clear as mud: Desiccation cracks help reveal the shape of water on Mars

20.04.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>