Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insights gained from molecular modeling may lead to better insecticides

25.02.2004


One of the most damaging crop pests, the corn earworm, may be outwitting efforts to control it by making structural changes in a single metabolic protein, but new insights uncovered by molecular modeling could pave the way for more efficient insecticides, say researchers at the University of Illinois at Urbana-Champaign.


The modeled structure of the CYP6B8 protein in the corn earworm (Helicoverpa
zea). A potential substrate binding cavity, in green, where insecticides or plant defense chemicals can be detoxified, is shown above the heme, the small complex that includes the red sphere at its center
Photo courtesy of Jerome Baudry



In a study that compared the ability of corn earworms (Helicoverpa zea) and black swallowtail butterflies (Papilio polyxenes) to neutralize insecticides and plant defense allelochemicals that target insect herbivores, researchers focused on the insectsÕ primary detoxifying cytochrome P450 enzymes.

The study was published online Monday (Feb. 23) in advance of regular publication in the Proceedings of the National Academy of Sciences.


Earworms, which can feed on hundreds of different kinds of plants, have evolved generalist counter-defense P450 proteins that can process more diverse arrays of harmful agents than can similar proteins in black swallowtails, which consume a restricted diet of only two plant families.

Predictive three-dimensional modeling of the structures of the proteins detoxifying allelochemicals and insecticides has indicated vivid differences in the catalytic sites of CYP6B1, the P450 in black swallowtails, and CYP6B8, the P450 protein in earworms.

Because the corn earwormÕs metabolic protein is more flexible, it can bind to and detoxify six different kinds of plant defense chemicals as well as three common insecticides, said Jerome Baudry, a senior research scientist in the School of Chemical Sciences at Illinois. "This generalist insect has adapted to the natural chemical defenses of plants so that it can feed on a wider variety of plants," he said.

The P450 studied in the specialist is significantly more constrained. It contains a more rigid catalytic pocket that restricts the range of plant chemicals and insecticides that can enter and be processed, Baudry said.

While the specialization allows for much higher rates of detoxification of chemicals that black swallowtails normally encounter, they can handle few other toxins. In the study, the CYP6B1 protein metabolized only two plant defense chemicals and one insecticide.

"This is the first clear demonstration that resistance to plant allelochemicals and insecticides can be acquired by changes within a single P450 catalytic site," said Mary A. Schuler, a professor of cell and structural biology. "If you can identify the P450 responsible for metabolizing insecticides and find a way to inactivate its catalytic site, you kill the P450 and prevent it from detoxifying insecticides."

Accomplishing that, however, wonÕt be easy because there is at least one other P450 in corn earworms that also handles insecticides, she said. "To truly hit the earworms, you would need to find one inhibitor that can kill both enzymes. Ultimately, it may be possible to use a synergistic approach that would kill more insects using significantly lower levels of insecticides, thereby reducing the toxicity of insecticides in the environment," she said.

Structural differences of the P450s involved in these chemical detoxifications result from changes in the arrangement of amino acids within the catalytic sites. In the black swallowtailÕs version, aromatic rings protrude into the substrate binding site, creating a rigid space in which allelochemicals or insecticides must fit exactly Ð like keys going into locks, Baudry said. The amino acid residues in the catalytic site stabilize the toxic substrate so it is optimally bonded with the proteinÕs heme, an iron-containing pigment in the catalytic site that mediates oxidation of the chemical to a non-toxic product.

In the earworm protein, many of the aromatic rings are missing, creating a much more accessible and flexible catalytic site. As a result, toxins of many different shapes and sizes can enter and be detoxified. Since the toxins are not as rigidly restricted, they are not detoxified quite as efficiently as some of the toxins encountered by the specialist P450.

"The corn earworm thus is jack of many trades but master of none, but this biochemical ability allows it to acquire new host plants and overcome new pesticides with relative ease," said co-investigator May R. Berenbaum, the head of the entomology department at Illinois and an expert on allelochemicals.


Xianchun Li, a doctoral student in entomology, also was a coauthor of the paper and a major contributor to the research.

The study was funded by grants from the U.S. Department of Agriculture to Schuler and Berenbaum, a grant from the National Institutes of Health to Schuler, and a China Natural Science Foundation grant to Li.

Jim Barlow | UIUC
Further information:
http://www.news.uiuc.edu/news/04/0224insects.html
http://www.uiuc.edu/index.html

More articles from Agricultural and Forestry Science:

nachricht Filling intercropping info gap
16.11.2017 | American Society of Agronomy

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>