Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Blanca de Tudela (Tudela White) artichoke the most productive of all

23.02.2004


The artichoke grown in Navarre, the Blanca de Tudela, appears earlier, is the most productive and has a greater industrial and agricultural yield than the rest of the varieties of this plant. This is the conclusion of researcher Juan Ignacio Macua González in his PhD thesis defended at the Public University of Navarre.



Navarre, nucleus of cultivation and supply

In Spain there are some 20,000 hectares given over to the cultivation of the artichoke. This surface area is fundamentally concentrated in the Mediterranean region, but also in Catalonia, Andalusía and along the Ebro Valley (in the Navarre, Rioja and Aragon regions). The importance of Navarre – number four on the list - does not lie in its volume of production given that, for example, artichoke cultivation in this Autonomous Community is only 5% of the total production in Spain, but in the fact that the area is the centre of the cultivation and the supply of the plant for the whole of Spain and even for other countries.


In Navarre, where the cultivation of the artichoke has a markedly strong presence in the agroindustrial sector, both for its production for the fresh market as well as for the canning and frozen food industries. The only variety grown is the Blanca de Tudela variety which has an oval-shaped artichoke head, quite small, compact and green. This variety is appreciated for its precocity, the ease with which it can be exploited industrially and its capacity for vegetative multiplication.

Within this context, the object of the thesis was to test to see if this artichoke variety is, indeed, the only ideal one for cultivation in the Ebro Valley or if, on the contrary, there are other varieties that might be an improvement on this. To this end, the agricultural behaviour of the Blanca de Tudela variety and its aptitude for industrial production applications was analysed in comparison to other varieties (the French Camus du Bretaigne and Violet du Provence and the Italian Violeta, Romanesco, Espinoso Sardo, etc.) given that, together with Spain, France and Italy are responsible for 70% of the world’s artichoke production.

A total of 38 varieties of artichoke of varying origin were studied over a period of six months at the Navarre Governments experimental agricultural station (ITG) at Cadreita with the aim of finding out how foreign varieties adapted to the features of the Ebro Valley, to the manner of typical vegetative propagation and industrial processes of the area.

Greater productivity and precocity

Sr Macua, an expert in horticulture, concluded that the power of vegetative propagation of Blanca de Tudela is greater than that of the Italian or French varieties.

The French varieties have a central trunk from which all the artichokes sprout whereas the Blanca de Tudela has a very small main sprout but with many lateral sprouts, i.e., axilar shoots which can be separated from the mother plant in order to propagate the plant.

As regards productivity, the industry demands that the size of the artichoke head have a maximum diameter of between 60 and 70 mm. Taking this parameter into account, the study showed that the Blanca de Tudela provided a larger number of artichoke heads of this size per plant in comparison to the rest of the varieties. Thus, with Blanca de Tudela between 20 and 30 heads per plant, whereas the Brittany variety gave between 12 and 14 and one of the Italian varieties, the Espinoso Sardo, only yielded 10 or 12 heads.

Additionally, the thesis concluded that the Navarre variety is also an earlier perennial than the others. In fact, this variety is the one used throughout all zones in temperate climates, such as the Mediterranean which produces artichoke crops from October to April, unlike in the Ebro Valley, where only a spring crop is harvested.

Apart from its precocity, the harvesting period of the Blanca de Tudela variety of artichoke is much longer in climatically mild zones. This feature enables the product to be better distributed on both the fresh vegetable and industrial markets. This is why, as the PhD author explains, this variety is of particular interest in areas like Morocco or South America where they are trying to introduce the cultivation of the artichoke.

More industrial yield

The problem with the artichoke is that it has low industrial-level yields: for 1 kilo of artichokes that the farmer takes to a production centre, only between 200 and 220 grams are product-useful. Nevertheless, of all the varieties analysed, it was concluded that the Blanca de Tudela is the one with the greatest industrial production, in test conditions.

In fact, all countries are introducing the artichoke production, especially in South America and all seed companies are currently looking to crossing varieties with that of the Blanca de Tudela in order to obtain the characteristics of the Navarre artichoke.

Contact :
Iñaki Casado Redin
Nafarroako Unibertsitate Publikoa
inaki.casado@unavarra.es
(+34) 948 16 97 82

Iñaki Casado Redin | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=421&hizk=I
http://www.unavarra.es

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>