Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bluetongue disease a growing threat

03.02.2004


Research into the reasons for the recent world-wide spread of the devastating animal disease, bluetongue, could have major implications for the long-term future of Australia’s sheep industry.



According to a senior epidemiologist at CSIRO Livestock Industries’ Australian Animal Health Laboratory in Geelong, Dr Peter Daniels, bluetongue disease is spreading rapidly in Europe and new strains of bluetongue virus have been detected in Australia.

"While Australian sheep are currently free of bluetongue we must learn more about how the virus spreads so we can ensure that the national flock remains free of this destructive disease," Dr Daniels says.


Sheep infected with bluetongue develop a high fever and swelling and/or lesions around the face and feet. Lesions can also develop in the animal’s mouth and, in severe cases, sheep die within two weeks of being infected.

Bluetongue infections are common in sheep, cattle and other ruminants in tropical and subtropical areas around the world but recently began to spread to previously unaffected regions.

"Bluetongue has turned up in parts of Europe where it was previously unknown," Dr Daniels says. "This emergence seems to be linked to global warming which may enable the virus’ insect carriers to survive where they previously could not."

In Australia, the disease does not occur in commercial sheep flocks. The insects that spread the virus do not occur in the same areas as the major sheep populations and strains of bluetongue virus are non-virulent (non disease-causing).

However, bluetongue is spreading in Australia, moving south of the Kimberley into the Pilbara. In recent years, three new South East Asian strains of the virus have entered the Northern Territory, but these have not spread beyond the Top End.

"The reasons for the spread are complex, but partly relate to changing patterns of land use, with cattle replacing sheep in some areas. Some of the insects that spread bluetongue feed more readily on cattle than sheep," Dr Daniels says.

The disease movements were detected by the National Arbovirus Monitoring Program (NAMP), managed by Animal Health Australia. Disease information is collected by monitoring young cattle in sentinel herds throughout the country. AAHL acts as a reference laboratory for the program.

Dr Daniels says scientists want to understand whether the spread of virulent bluetongue viruses in Australia is only a matter of time, or whether the Top End of the Northern Territory is a separate ecosystem for bluetongue viruses, with different characteristics that would operate to contain the spread of more virulent strains.

"Such an ecosystem would depend on the relationships between the viral strains and insect carriers present as well as the habitat requirements of those insect carriers," he says.

"If the virulence of the viruses is discovered to be linked to the species of insect by which it is spread, surveillance programs could be fine-tuned and the risk of severe bluetongue disease in Australia more accurately assessed."

More information:
Dr Peter Daniels, CSIRO Livestock Industries, 03 5227 5272

Media assistance:
Emma Homes, CSIRO Livestock Industries 03 5227 5123

Bill Stephens | CSIRO
Further information:
http://www.csiro.au/index.asp?type=mediaRelease&id=prbluetongue

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>