Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Want a side of algae with that? Hawaiian farmers sell seaweed by the seashore

02.02.2004


Although a yearning to surf was what first drove native Tucsonan Edward Glenn to Hawaii, what keeps him going back is his life-long interest in marine agronomy. Now, instead of hanging out in the waves, Glenn spends his time on the leeward side of the island of Molokai, working with the local community on sustainable aquaculture projects for the ancient fishponds that dot the island’s south coast.



Rather than growing fish, Glenn, Stephen Nelson and their colleagues are focusing on the edible red seaweed, Gracilaria parvispora. The alga, known as "long ogo" by the Japanese, is eaten by people in Hawaii, Asia and the Pacific and is also a source of agar, a common thickening agent in Japanese cooking. This month the team received a grant to develop new markets for Hawaii long ogo products.

Long ogo was once the most important edible seaweed on Hawaii’s reefs. In the past, people would go out to the reef and yank the seaweed off the rocks or even take the whole rock, Glenn says. Ultimately, the reef populations of seaweed declined. People started to grow another species of seaweed in tanks on land, but the replacement just wasn’t as good.


"This particular seaweed is the one that people desire the most, and it has become overharvested on the reefs of Hawaii," says Glenn, a professor of soil, water and environmental science in the University of Arizona’s College of Agriculture and Life Sciences (CALS). "Our scientific challenge was to find a way to put the seaweed into a practical aquaculture system. People have been trying for years to grow this particular species, and they haven’t been able to do it."

However, Glenn and his colleagues have done it. The group, which includes researchers from the department of soil, water and environmental science’s Environmental Research Laboratory (ERL) and others in Hawaii, has developed a way to grow the complete life cycle of long ogo without needing to harvest starter plants from the ocean. Glenn says the sustainable system for growing fresh long ogo is unique in the United States.

Molokai is a relatively undeveloped island, without the coastline-oriented tourist industry prevalent on Hawaiian islands such as Oahu and Hawaii. Many Molokai residents cherish their rural lifestyle and want to continue traditional Hawaiian ways of life, rather than converting the island’s economy to one dependent on tourism, Glenn says. However, Molokai also has limited opportunities for employment. An aquaculture project that focuses on growing long ogo in the ancient fishponds would satisfy a lot of different needs.

A key part of the project is the hatchery, run by Ke Kua’aina Hanauna Hou (KKHH), a nonprofit organization that develops aquaculture enterprises for coastal residents. In KKHH’s hatchery tanks, algal spores are allowed to settle onto rocks or coral chips and start growing. Then those rocks or chunks of coral are given away to the farmers so they can start their own plot of long ogo. Farmers can have a load of seaweed-covered rocks delivered by pickup.

Glenn says the farmer’s next step would be "put ’em out and start a little patch of it and that would be your little patch to harvest and tend." The starter plants can be grown in a variety of places: an ancient fishpond in the ocean, a land-locked fishpond or even in the effluent runoff ditch from a shrimp-farming operation. The little plots of long ogo that are grown in the ocean release spores periodically, thereby replenishing the natural population.

"This is actually repopulating the reef," says Nelson, a senior research scientist at ERL whose primary research focus is the Molokai project.

Long ogo is eaten fresh and often combined with other foods. Glenn says, "It’s crunchy and slightly salty, like a pickle without the vinegar taste." One of his favorite long ogo dishes is ahi poke, a Hawaiian dish like sushi that combines cubes of fresh, raw tuna, pine nuts, chopped ogo and sesame oil with some soy sauce.

Now the long ogo project is a $300,000 enterprise that provides additional income for about 40 long ogo farmers. The project has been so successful that Glenn and his colleagues are looking for new markets for long ogo. The team’s $49,000 grant from the U.S. Department of Agriculture’s Cooperative State Research, Education and Extension Service will let Glenn, Nelson and KKHH develop additional Hawaiian ogo products, such as sports gels, gourmet recipes and healthcare products.

Some large-scale seaweed-processing plants use harsh chemicals to extract the agar, but Nelson sees an opportunity to extract Molokai agar in gentler ways so it can be marketed as an organic product. "We can say this was grown in the pristine waters of Hawaii."

Ed Glenn | EurekAlert!
Further information:
http://www.arizona.edu/

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>