Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Want a side of algae with that? Hawaiian farmers sell seaweed by the seashore

02.02.2004


Although a yearning to surf was what first drove native Tucsonan Edward Glenn to Hawaii, what keeps him going back is his life-long interest in marine agronomy. Now, instead of hanging out in the waves, Glenn spends his time on the leeward side of the island of Molokai, working with the local community on sustainable aquaculture projects for the ancient fishponds that dot the island’s south coast.



Rather than growing fish, Glenn, Stephen Nelson and their colleagues are focusing on the edible red seaweed, Gracilaria parvispora. The alga, known as "long ogo" by the Japanese, is eaten by people in Hawaii, Asia and the Pacific and is also a source of agar, a common thickening agent in Japanese cooking. This month the team received a grant to develop new markets for Hawaii long ogo products.

Long ogo was once the most important edible seaweed on Hawaii’s reefs. In the past, people would go out to the reef and yank the seaweed off the rocks or even take the whole rock, Glenn says. Ultimately, the reef populations of seaweed declined. People started to grow another species of seaweed in tanks on land, but the replacement just wasn’t as good.


"This particular seaweed is the one that people desire the most, and it has become overharvested on the reefs of Hawaii," says Glenn, a professor of soil, water and environmental science in the University of Arizona’s College of Agriculture and Life Sciences (CALS). "Our scientific challenge was to find a way to put the seaweed into a practical aquaculture system. People have been trying for years to grow this particular species, and they haven’t been able to do it."

However, Glenn and his colleagues have done it. The group, which includes researchers from the department of soil, water and environmental science’s Environmental Research Laboratory (ERL) and others in Hawaii, has developed a way to grow the complete life cycle of long ogo without needing to harvest starter plants from the ocean. Glenn says the sustainable system for growing fresh long ogo is unique in the United States.

Molokai is a relatively undeveloped island, without the coastline-oriented tourist industry prevalent on Hawaiian islands such as Oahu and Hawaii. Many Molokai residents cherish their rural lifestyle and want to continue traditional Hawaiian ways of life, rather than converting the island’s economy to one dependent on tourism, Glenn says. However, Molokai also has limited opportunities for employment. An aquaculture project that focuses on growing long ogo in the ancient fishponds would satisfy a lot of different needs.

A key part of the project is the hatchery, run by Ke Kua’aina Hanauna Hou (KKHH), a nonprofit organization that develops aquaculture enterprises for coastal residents. In KKHH’s hatchery tanks, algal spores are allowed to settle onto rocks or coral chips and start growing. Then those rocks or chunks of coral are given away to the farmers so they can start their own plot of long ogo. Farmers can have a load of seaweed-covered rocks delivered by pickup.

Glenn says the farmer’s next step would be "put ’em out and start a little patch of it and that would be your little patch to harvest and tend." The starter plants can be grown in a variety of places: an ancient fishpond in the ocean, a land-locked fishpond or even in the effluent runoff ditch from a shrimp-farming operation. The little plots of long ogo that are grown in the ocean release spores periodically, thereby replenishing the natural population.

"This is actually repopulating the reef," says Nelson, a senior research scientist at ERL whose primary research focus is the Molokai project.

Long ogo is eaten fresh and often combined with other foods. Glenn says, "It’s crunchy and slightly salty, like a pickle without the vinegar taste." One of his favorite long ogo dishes is ahi poke, a Hawaiian dish like sushi that combines cubes of fresh, raw tuna, pine nuts, chopped ogo and sesame oil with some soy sauce.

Now the long ogo project is a $300,000 enterprise that provides additional income for about 40 long ogo farmers. The project has been so successful that Glenn and his colleagues are looking for new markets for long ogo. The team’s $49,000 grant from the U.S. Department of Agriculture’s Cooperative State Research, Education and Extension Service will let Glenn, Nelson and KKHH develop additional Hawaiian ogo products, such as sports gels, gourmet recipes and healthcare products.

Some large-scale seaweed-processing plants use harsh chemicals to extract the agar, but Nelson sees an opportunity to extract Molokai agar in gentler ways so it can be marketed as an organic product. "We can say this was grown in the pristine waters of Hawaii."

Ed Glenn | EurekAlert!
Further information:
http://www.arizona.edu/

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>