Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new twist on the mad cow

30.01.2004


Scientists at The Scripps Research Institute discover the normal prion protein may contribute directly to disease



In a surprising twist on a timely topic, scientists at The Scripps Research Institute are presenting evidence that mad cow disease prions cannot kill neurons on their own and that normal, healthy cellular prion protein may be a direct accomplice in unleashing neuronal destruction.

Bovine spongiform encephalopathy (BSE), or mad cow disease, is caused by prions, a misfolded "scrapie" form of the normal cellular protein, which is found on the surface of human, sheep, and cow neurons. Prion infections are also implicated in one form of the same disease in humans, called Variant Creutzfeldt-Jakob Disease, an incurable condition that causes neurologic abnormalities, dementia, and eventually death.


BSE has caused widespread public concern when it has appeared in cattle in Europe, Canada, and most recently the United States, as it is believed that the disease is transmitted across species by the consumption of prions from a diseased animal’s central nervous system.

Unlike most infectious diseases, the infectious material of mad cow and other prion disease is not a virus, bacteria, or some other pathogen, but a protein. Normally, prion proteins are expressed throughout the body and sit anchored onto the surfaces of cells in a wide variety of tissues, particularly on cells in neuronal tissue. They are something of an enigma because scientists do not know what they do there. But if the function of prions is mysterious, their malfunction is notorious.

"The prion protein," says Scripps Research investigator Anthony Williamson, Ph.D., "has a Jekyll and Hyde personality."

A New View of Normal Prions

Previously, scientists viewed the normal cellular prion protein as mere fodder that the scrapie prions would turn into more scrapie prions until an army of scrapies grew into a spongy mass, killing brain cells, and causing the neurological wasting that characterizes the disease.

Now, Williamson and his colleagues in the Department of Immunology at The Scripps Research Institute are telling another story.

In an upcoming issue of the journal Science, Williamson and his colleagues present evidence that scrapie prions cannot kill neurons on their own. They required normal cellular prions to be present.

Furthermore, Williamson and his colleagues discovered that they were able to induce catastrophic neurotoxicity in vivo without any scrapie prions at all by adding antibody molecules, which cross-linked the normal prion protein. Thus, engaging and activating the normal prion protein triggered the type of neurodegeneration that characterize BSE and variant Creutzfeldt-Jakob.

This suggests a possible mechanism for prion pathogenesis-- that scrapie prions cross-link normal cellular prions, killing neurons in the process. Rather than being innocent bystanders until converted into scrapie prions, normal cellular prions may be essential ingredients for prion diseases like BSE.

While illuminating the mechanisms of disease, the findings also suggest caution to one possible approach to fighting prion diseases-- administering antibodies or small molecules that will bind to the normal prion protein and prevent the scrapie prions from binding. However, it now appears that in cross-linking the normal prion protein, such a therapy may actually promote rapid spongiosis.


The research article, "Crosslinking Cellular Prion Protein Triggers Neuronal Apoptosis in vivo," is authored by Laura Solforosi, Jose R. Criado, Dorian B. McGavern, Sebastian Wirz, Manuel Sánchez-Alavez, Shuei Sugama, Lorraine A. DeGiorgio, Bruce T. Volpe, Erika Wiseman, Gil Abalos, Eliezer Masliah, Donald Gilden, Michael B. Oldstone, Bruno Conti, and R. Anthony Williamson and appears in Science Express on January 29, 2004. Science Express provides rapid electronic publication of selected papers in the journal Science. Print versions of these papers will appear in Science after several weeks. See: http://www.sciencemag.org/sciencexpress/recent.shtml.

The research was funded by the National Institutes of Health, the Department of Defense National Prion Research Program, and the Clark Fellowship in Neurophysiology from the Brain Research and Treatment Center, Scripps Clinic.

About The Scripps Research Institute

The Scripps Research Institute in La Jolla, California, is one of the world’s largest, private, non-profit biomedical research organizations. It stands at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its research into immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune diseases, cardiovascular diseases and synthetic vaccine development.

Jason Bardi | Scripps
Further information:
http://www.sciencemag.org/sciencexpress/recent.shtml
http://www.scripps.edu/
http://www.scripps.edu/news/press/012904.html

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>