Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new twist on the mad cow

30.01.2004


Scientists at The Scripps Research Institute discover the normal prion protein may contribute directly to disease



In a surprising twist on a timely topic, scientists at The Scripps Research Institute are presenting evidence that mad cow disease prions cannot kill neurons on their own and that normal, healthy cellular prion protein may be a direct accomplice in unleashing neuronal destruction.

Bovine spongiform encephalopathy (BSE), or mad cow disease, is caused by prions, a misfolded "scrapie" form of the normal cellular protein, which is found on the surface of human, sheep, and cow neurons. Prion infections are also implicated in one form of the same disease in humans, called Variant Creutzfeldt-Jakob Disease, an incurable condition that causes neurologic abnormalities, dementia, and eventually death.


BSE has caused widespread public concern when it has appeared in cattle in Europe, Canada, and most recently the United States, as it is believed that the disease is transmitted across species by the consumption of prions from a diseased animal’s central nervous system.

Unlike most infectious diseases, the infectious material of mad cow and other prion disease is not a virus, bacteria, or some other pathogen, but a protein. Normally, prion proteins are expressed throughout the body and sit anchored onto the surfaces of cells in a wide variety of tissues, particularly on cells in neuronal tissue. They are something of an enigma because scientists do not know what they do there. But if the function of prions is mysterious, their malfunction is notorious.

"The prion protein," says Scripps Research investigator Anthony Williamson, Ph.D., "has a Jekyll and Hyde personality."

A New View of Normal Prions

Previously, scientists viewed the normal cellular prion protein as mere fodder that the scrapie prions would turn into more scrapie prions until an army of scrapies grew into a spongy mass, killing brain cells, and causing the neurological wasting that characterizes the disease.

Now, Williamson and his colleagues in the Department of Immunology at The Scripps Research Institute are telling another story.

In an upcoming issue of the journal Science, Williamson and his colleagues present evidence that scrapie prions cannot kill neurons on their own. They required normal cellular prions to be present.

Furthermore, Williamson and his colleagues discovered that they were able to induce catastrophic neurotoxicity in vivo without any scrapie prions at all by adding antibody molecules, which cross-linked the normal prion protein. Thus, engaging and activating the normal prion protein triggered the type of neurodegeneration that characterize BSE and variant Creutzfeldt-Jakob.

This suggests a possible mechanism for prion pathogenesis-- that scrapie prions cross-link normal cellular prions, killing neurons in the process. Rather than being innocent bystanders until converted into scrapie prions, normal cellular prions may be essential ingredients for prion diseases like BSE.

While illuminating the mechanisms of disease, the findings also suggest caution to one possible approach to fighting prion diseases-- administering antibodies or small molecules that will bind to the normal prion protein and prevent the scrapie prions from binding. However, it now appears that in cross-linking the normal prion protein, such a therapy may actually promote rapid spongiosis.


The research article, "Crosslinking Cellular Prion Protein Triggers Neuronal Apoptosis in vivo," is authored by Laura Solforosi, Jose R. Criado, Dorian B. McGavern, Sebastian Wirz, Manuel Sánchez-Alavez, Shuei Sugama, Lorraine A. DeGiorgio, Bruce T. Volpe, Erika Wiseman, Gil Abalos, Eliezer Masliah, Donald Gilden, Michael B. Oldstone, Bruno Conti, and R. Anthony Williamson and appears in Science Express on January 29, 2004. Science Express provides rapid electronic publication of selected papers in the journal Science. Print versions of these papers will appear in Science after several weeks. See: http://www.sciencemag.org/sciencexpress/recent.shtml.

The research was funded by the National Institutes of Health, the Department of Defense National Prion Research Program, and the Clark Fellowship in Neurophysiology from the Brain Research and Treatment Center, Scripps Clinic.

About The Scripps Research Institute

The Scripps Research Institute in La Jolla, California, is one of the world’s largest, private, non-profit biomedical research organizations. It stands at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its research into immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune diseases, cardiovascular diseases and synthetic vaccine development.

Jason Bardi | Scripps
Further information:
http://www.sciencemag.org/sciencexpress/recent.shtml
http://www.scripps.edu/
http://www.scripps.edu/news/press/012904.html

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>