Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signal chemical primes plants for pest attack

27.01.2004


Physically damaged or chewed plants produce a volatile chemical that may serve as a primer to prepare nearby plants to defend themselves against insect attack, according to a team of researchers.



"We know that when caterpillars chew on plants, eventually the plants produce chemicals attracting wasps that are the natural enemy of the caterpillar," says Dr. James H. Tumlinson, the Ralph O. Mumma endowed professor of entomology at Penn State. "Natural predators can be an effective method of biological control of pests in agriculture."

However, these predator attracting chemicals do not appear immediately. The first chemicals released are green leafy volatiles (GLV), the odor of new mown grass or crushed leaves. These are highly volatile and appear immediately so they are good candidates as signals to other plants.


To explore this, Tumlinson, working at the Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, U.S. Department of Agriculture, Gainesville, Fl., looked at how GLV influenced undamaged plants in the area by studying corn seedlings and beet army worm, a caterpillar that eats corn leaves as well as cotton, tobacco and other plants. The researchers exposed seedlings to GLV for an hour or overnight. They then tested the undamaged plants by either mechanically damaging them or mechanically damaging them and applying beet armyworm spit to the wounds.

"We discovered that . . . exposure to GLV primed corn plant defenses to respond more strongly against subsequent attack by herbivorous insects by increasing jasmonic acid biosynthesis and volatile organic compounds (VOC)," the researchers report in the current issue of the Proceedings of the National Academy of Science.

Jasmonic acid is a plant hormone that turns on plant defenses, including VOCs, which are the chemicals that attract the caterpillar’s parasites and predators. They usually do not appear until hours after the initial attack on the plant.

"The GLVs appear to be like a vaccine, turning on the defensive mechanism, but not pushing it to full strength," says Tumlinson. "If the plant is not attacked, then it does not waste energy producing defenses. However, if it is attacked, the response is more rapid and stronger."

The researchers found that the primed plants produced chemical signals that attract the natural parasites and predators in almost twice the amounts that unprimed plants do. Plants damaged only mechanically did not show this response. Those mechanically damaged and then treated with caterpillar spit to simulate caterpillar feeding showed the enhanced response.

"If you mechanically wound a plant, it is not the same as a caterpillar feeding on it," says Tumlinson. "Caterpillars elicit much greater response than just mechanical damage alone."

Researchers tested the GLV-exposed plants the day after exposure, but have not yet tested the plants after the first day. They therefore do not know if the priming response lasts longer than a day. If the response is long lived, then perhaps exposure to GLVs could protect fields in danger of becoming infested with beet armyworm or other leaf eating caterpillars. This natural chemical might someday reduce the use of pesticides and improve crop quality.

Tumlinson chose the corn and beet armyworm system because the Florida facility has raised beet armyworms for a long time, and corn seedlings can be ready for experimentation in a week or two, while other plants take up to a month to be suitable for use.

"We do not know for sure if the same mechanism will work on other crops like cotton and tobacco," he adds. "It might not have exactly the same effect."

Experiments have not been done on cotton, tobacco or other crops, so it is unclear if this vaccination would work on those or all crops, but the potential for a natural preventive method of pest control exists.

The researchers included Tumlinson; Juergen Engelberth, postdoctoral fellow at Penn State; and Eric A. Schmelz, research scientist; and Hans T. Alborn, postdoctoral fellow at the Center for Medical, Agricultural and Veterinary Entomology.

A’ndrea Elyse Messer | Penn State
Further information:
http://live.psu.edu/story/5384

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New technique makes brain scans better

22.06.2017 | Medical Engineering

CWRU researchers find a chemical solution to shrink digital data storage

22.06.2017 | Life Sciences

Warming temperatures threaten sea turtles

22.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>