Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers seek to clone ’mad cow disease’ resistant cattle strain

09.01.2004


Scientists in the Virginia-Maryland Regional College of Veterinary Medicine (VMRCVM) at Virginia Tech are trying to clone cattle that are genetically incapable of developing "Mad Cow Disease."

As federal and state government officials grapple with strategies to limit the economic and health risks associated with the troublesome discovery of the nation’s first case of Bovine Spongiform Encephalopathy (BSE) – or "Mad Cow Disease"-- Will Eyestone, research associate professor in Large Animal Clinical Sciences, and Bill Huckle, associate professor of biomedical science, are conducting important research with the little understood molecules believed to cause the deadly brain-wasting disease.

Eyestone, a molecular reproductive biologist who was senior research scientist for PPL Therapeutics, the organization that cloned Dolly the sheep, now heads the VMRCVM’s transgenic animal research program.



Most people think of disease as being caused by infectious organisms like bacteria, viruses, rickettsia, protozoa or fungi, explains Eyestone. Those microorganisms reproduce themselves to cause disease in fairly conventional ways, either inside a cell or elsewhere in the body.

But prions behave very differently than these more common disease-causing organisms, explains Eyestone. Prions are actually a form of protein that naturally occur in all mammals, though scientists remain uncertain about the exact purpose they serve in advanced mammals like humans. Transmissible spongiform encephalopathies like BSE and new variant Creutzfeldt-Jacob Disease (vCJD), the human form of the disease, are believed to occur when the non-pathogenic prions that normally reside in mammalian nervous systems are converted into pathogenic forms.

Proteins, the building blocks of metabolic processes, are long chains of amino acids that fold in upon themselves in predictable patterns and shapes that result from the bio-electrical relationships that exist between individual molecules, according to Eyestone. Proteins normally "fold" in only one way. But when the "normal" prions are infected by pathogenic prions, they begin to "fold" in another way that leads to disease.

In the case of BSE and vCJD, pathogenic prions introduced from contaminated food sources interact with normal prions in the body and transform them into the lethal agents that eventually create the "Swiss cheese-like" lesions in the brain that cause the devastating neurological symptoms of the disease.

The pathogenic prions that are ingested by cattle in contaminated feed do not seem to be affected by the normal enzymatic activity of the digestion process, explains Eyestone. The prions pass through the wall of the gut and are subsequently absorbed by innervated lymphatic tissues, where they eventually accumulate in the nerves, and then migrate to the spinal cord and brain. The process takes years, Eyestone says, which accounts for the five to seven year incubation period that characterizes both the animal and human forms of the disorder.

While scientists don’t know how to stop the pathogenic process once it gets underway, some, like Eyestone and Huckle, are interested in creating an animal that lacks the genomic architecture to code for the production of normal prions.

"In order to be susceptible to prion disease, the individual has to be able to express the prion," says Eyestone, who is using the same somatic cell transfer technology to clone a cow without normal prions that PPL used to create Dolly the sheep and Mr. Jefferson, the first cloned calf.

Basically, the process involves taking somatic cells harvested from an animal, and replacing the nucleus of that cell with the nucleus of another cell that possesses the desired genetic characteristics, and then implanting that embryo into the animal for a normal gestational development period.

"We know that if you knock out these prion proteins in laboratory mice that there is no apparent negative effect," said Eyestone. "We know that this prion does not appear to be required for normal functions of life. But the mouse has not been that informative to us and we are hoping that the cow will be more so."

The research is funded by the National Institutes of Health. The core objective of the NIH grant is to produce a cow that is genetically incapable of producing prions, and then determine whether or not the viability and function of the animal has been affected by the lack of the prion. Once the cow is cloned in late 2004, the researchers will conduct a number of behavioral and physiological evaluations of the animal.

If efforts to produce a normally functioning cow that lacks the genetic ability to code for the production of prions are successful, the researchers may have identified a strategy for finally containing the risks of this ominous disease.

While the prospects of "cloning" prion free cattle on the scale of America’s 100 million head cattle herd may seen daunting, Eyestone points out that with the widespread use of artificial insemination in modern agriculture, great strides could be made in as little as six or seven generations.

On a smaller scale, sub-populations of prion-free cattle could be produced for use in other tasks such as the production of pharmaceutical compounds that are eventually used in people, thereby eliminating the risk that a drug produced to promote human health and well-being might accidentally cause the deadly neurological condition.

Jeff Douglas | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Agricultural and Forestry Science:

nachricht New study shows producers where and how to grow cellulosic biofuel crops
17.01.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Robotic weeders: to a farm near you?
10.01.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

More genes are active in high-performance maize

19.01.2018 | Life Sciences

How plants see light

19.01.2018 | Life Sciences

Artificial agent designs quantum experiments

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>