Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers seek to clone ’mad cow disease’ resistant cattle strain

09.01.2004


Scientists in the Virginia-Maryland Regional College of Veterinary Medicine (VMRCVM) at Virginia Tech are trying to clone cattle that are genetically incapable of developing "Mad Cow Disease."

As federal and state government officials grapple with strategies to limit the economic and health risks associated with the troublesome discovery of the nation’s first case of Bovine Spongiform Encephalopathy (BSE) – or "Mad Cow Disease"-- Will Eyestone, research associate professor in Large Animal Clinical Sciences, and Bill Huckle, associate professor of biomedical science, are conducting important research with the little understood molecules believed to cause the deadly brain-wasting disease.

Eyestone, a molecular reproductive biologist who was senior research scientist for PPL Therapeutics, the organization that cloned Dolly the sheep, now heads the VMRCVM’s transgenic animal research program.



Most people think of disease as being caused by infectious organisms like bacteria, viruses, rickettsia, protozoa or fungi, explains Eyestone. Those microorganisms reproduce themselves to cause disease in fairly conventional ways, either inside a cell or elsewhere in the body.

But prions behave very differently than these more common disease-causing organisms, explains Eyestone. Prions are actually a form of protein that naturally occur in all mammals, though scientists remain uncertain about the exact purpose they serve in advanced mammals like humans. Transmissible spongiform encephalopathies like BSE and new variant Creutzfeldt-Jacob Disease (vCJD), the human form of the disease, are believed to occur when the non-pathogenic prions that normally reside in mammalian nervous systems are converted into pathogenic forms.

Proteins, the building blocks of metabolic processes, are long chains of amino acids that fold in upon themselves in predictable patterns and shapes that result from the bio-electrical relationships that exist between individual molecules, according to Eyestone. Proteins normally "fold" in only one way. But when the "normal" prions are infected by pathogenic prions, they begin to "fold" in another way that leads to disease.

In the case of BSE and vCJD, pathogenic prions introduced from contaminated food sources interact with normal prions in the body and transform them into the lethal agents that eventually create the "Swiss cheese-like" lesions in the brain that cause the devastating neurological symptoms of the disease.

The pathogenic prions that are ingested by cattle in contaminated feed do not seem to be affected by the normal enzymatic activity of the digestion process, explains Eyestone. The prions pass through the wall of the gut and are subsequently absorbed by innervated lymphatic tissues, where they eventually accumulate in the nerves, and then migrate to the spinal cord and brain. The process takes years, Eyestone says, which accounts for the five to seven year incubation period that characterizes both the animal and human forms of the disorder.

While scientists don’t know how to stop the pathogenic process once it gets underway, some, like Eyestone and Huckle, are interested in creating an animal that lacks the genomic architecture to code for the production of normal prions.

"In order to be susceptible to prion disease, the individual has to be able to express the prion," says Eyestone, who is using the same somatic cell transfer technology to clone a cow without normal prions that PPL used to create Dolly the sheep and Mr. Jefferson, the first cloned calf.

Basically, the process involves taking somatic cells harvested from an animal, and replacing the nucleus of that cell with the nucleus of another cell that possesses the desired genetic characteristics, and then implanting that embryo into the animal for a normal gestational development period.

"We know that if you knock out these prion proteins in laboratory mice that there is no apparent negative effect," said Eyestone. "We know that this prion does not appear to be required for normal functions of life. But the mouse has not been that informative to us and we are hoping that the cow will be more so."

The research is funded by the National Institutes of Health. The core objective of the NIH grant is to produce a cow that is genetically incapable of producing prions, and then determine whether or not the viability and function of the animal has been affected by the lack of the prion. Once the cow is cloned in late 2004, the researchers will conduct a number of behavioral and physiological evaluations of the animal.

If efforts to produce a normally functioning cow that lacks the genetic ability to code for the production of prions are successful, the researchers may have identified a strategy for finally containing the risks of this ominous disease.

While the prospects of "cloning" prion free cattle on the scale of America’s 100 million head cattle herd may seen daunting, Eyestone points out that with the widespread use of artificial insemination in modern agriculture, great strides could be made in as little as six or seven generations.

On a smaller scale, sub-populations of prion-free cattle could be produced for use in other tasks such as the production of pharmaceutical compounds that are eventually used in people, thereby eliminating the risk that a drug produced to promote human health and well-being might accidentally cause the deadly neurological condition.

Jeff Douglas | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>