Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Linking the immune system with lipid metabolism

19.12.2003


A team of researchers led by scientists at The Scripps Research Institute has discovered a family of proteins that connect the immune system to the body’s lipids - the fat molecules that are a major building block of the human body.



"This is the first time someone has shown how the immune system and lipid metabolism merge," says Associate Professor Luc Teyton, M.D., Ph.D., of Scripps Research. Teyton is the lead author of the study.

In the study, Teyton and his colleagues were examining what is known as a natural killer (NK) T cell. NK T cells are key players in the immune system and have been implicated in autoimmune diseases, such as diabetes, and in cancer--although scientists have not yet discerned exactly how.


NK T cells are unusual in that they fall somewhere between innate and adaptive immunity. They arise in the thymus, and, as mature cells, they stimulate an adaptive immune response and regulate a range of disease states, including diabetes, cancer, and pathogenic infections.

Like other T cells, they express T cell receptors (TCR)--although without the normal antigenic variability. Classical immune recognition involves a process in which variable TCRs recognize various proteins--pieces of protein from foreign pathogens, for instance--when these are presented by "antigen presenting cells" via a molecule called the major histocompatability complex (MHC). MHC molecules are like the burglar alarms that warn the immune system that a pathogen is invading.

However, NK T cells also express the "NK" innate immune cell receptors and may have the ability to see some of the lipids that bacteria like Mycobacterium tuberculosis, the bacteria that cause tuberculosis, display on their outer surface. NK T cells become activated when they bind to a cell surface protein called CD1 that bears an unknown lipidic ligand.

Once the NK T cells bind to CD1, they become activated and begin to secrete a large amount of proteins like interferon-gamma and interleukin-4, which in turn activate helper T cells. The helper T cells then induce specific B cells to unload bursts of soluble antibodies into the bloodstream, and these antibodies ultimately deal with cancerous cells and pathogens.

"These [NK T cells] are the master keys for the regulation of the immune system," says Teyton.

Critical Transfer Protein

Lipid binding to CD1 is not confined to the immune response, though, and endogenous human lipids seem to bind to CD1 as a way of maintaining normal bodily homeostasis.

A few years ago, Teyton was asking how the body loaded natural lipids onto CD1 molecules. He realized that there would have to be another protein inside cells that would transfer the lipid to the CD1 molecule, and so he searched on his computer for possible candidate proteins that could bind to lipids and transfer them onto CD1.

He found a family of genes that encode what are known as lipid transfer proteins, which were already well-characterized because they have been implicated in a number of neurological pediatric diseases. He began investigating whether any of these was the critical transfer protein he sought.

Indeed, one was.

Teyton and his colleagues found that if they removed the gene encoding for the protein prosaposin, they lost all NK T cells. This loss occurred because without prosaposin, the CD1 proteins were never loaded with the lipid, and therefore the NK T cells could not be selected in the thymus of the mutant mice. In addition, using recombinant forms of the saposins molecules, they demonstrated that saposin molecules could efficiently transfer lipids onto CD1d molecules.

Now the researchers are looking at which lipids bind to the CD1 molecules and how they are transported into the cell.


This work was done in very close collaboration with the laboratory of Dr. Albert Bendelac at the University of Chicago.

The research article "Editing of CD1d-Bound Lipid Antigens by Endosomal Lipid Transfer Proteins" is authored by Dapeng Zhou, Carlos Cantu III, Yuval Sagiv, Nicolas Schrantz, Ashok B. Kulkarni, Xiaoyang Qi, Don J. Mahuran, Carlos R. Morales, Gregory A. Grabowski, Kamel Benlagha, Paul Savage, Albert Bendelac, and Luc Teyton and appears in ScienceExpress, the online version of the journal Science on December 18, 2003.

The research was funded by the National Institutes of Health and the Cancer Research Institute.

Jason Bardi | EurekAlert!
Further information:
http://www.scripps.edu/

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>