Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Linking the immune system with lipid metabolism

19.12.2003


A team of researchers led by scientists at The Scripps Research Institute has discovered a family of proteins that connect the immune system to the body’s lipids - the fat molecules that are a major building block of the human body.



"This is the first time someone has shown how the immune system and lipid metabolism merge," says Associate Professor Luc Teyton, M.D., Ph.D., of Scripps Research. Teyton is the lead author of the study.

In the study, Teyton and his colleagues were examining what is known as a natural killer (NK) T cell. NK T cells are key players in the immune system and have been implicated in autoimmune diseases, such as diabetes, and in cancer--although scientists have not yet discerned exactly how.


NK T cells are unusual in that they fall somewhere between innate and adaptive immunity. They arise in the thymus, and, as mature cells, they stimulate an adaptive immune response and regulate a range of disease states, including diabetes, cancer, and pathogenic infections.

Like other T cells, they express T cell receptors (TCR)--although without the normal antigenic variability. Classical immune recognition involves a process in which variable TCRs recognize various proteins--pieces of protein from foreign pathogens, for instance--when these are presented by "antigen presenting cells" via a molecule called the major histocompatability complex (MHC). MHC molecules are like the burglar alarms that warn the immune system that a pathogen is invading.

However, NK T cells also express the "NK" innate immune cell receptors and may have the ability to see some of the lipids that bacteria like Mycobacterium tuberculosis, the bacteria that cause tuberculosis, display on their outer surface. NK T cells become activated when they bind to a cell surface protein called CD1 that bears an unknown lipidic ligand.

Once the NK T cells bind to CD1, they become activated and begin to secrete a large amount of proteins like interferon-gamma and interleukin-4, which in turn activate helper T cells. The helper T cells then induce specific B cells to unload bursts of soluble antibodies into the bloodstream, and these antibodies ultimately deal with cancerous cells and pathogens.

"These [NK T cells] are the master keys for the regulation of the immune system," says Teyton.

Critical Transfer Protein

Lipid binding to CD1 is not confined to the immune response, though, and endogenous human lipids seem to bind to CD1 as a way of maintaining normal bodily homeostasis.

A few years ago, Teyton was asking how the body loaded natural lipids onto CD1 molecules. He realized that there would have to be another protein inside cells that would transfer the lipid to the CD1 molecule, and so he searched on his computer for possible candidate proteins that could bind to lipids and transfer them onto CD1.

He found a family of genes that encode what are known as lipid transfer proteins, which were already well-characterized because they have been implicated in a number of neurological pediatric diseases. He began investigating whether any of these was the critical transfer protein he sought.

Indeed, one was.

Teyton and his colleagues found that if they removed the gene encoding for the protein prosaposin, they lost all NK T cells. This loss occurred because without prosaposin, the CD1 proteins were never loaded with the lipid, and therefore the NK T cells could not be selected in the thymus of the mutant mice. In addition, using recombinant forms of the saposins molecules, they demonstrated that saposin molecules could efficiently transfer lipids onto CD1d molecules.

Now the researchers are looking at which lipids bind to the CD1 molecules and how they are transported into the cell.


This work was done in very close collaboration with the laboratory of Dr. Albert Bendelac at the University of Chicago.

The research article "Editing of CD1d-Bound Lipid Antigens by Endosomal Lipid Transfer Proteins" is authored by Dapeng Zhou, Carlos Cantu III, Yuval Sagiv, Nicolas Schrantz, Ashok B. Kulkarni, Xiaoyang Qi, Don J. Mahuran, Carlos R. Morales, Gregory A. Grabowski, Kamel Benlagha, Paul Savage, Albert Bendelac, and Luc Teyton and appears in ScienceExpress, the online version of the journal Science on December 18, 2003.

The research was funded by the National Institutes of Health and the Cancer Research Institute.

Jason Bardi | EurekAlert!
Further information:
http://www.scripps.edu/

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>