Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Linking the immune system with lipid metabolism

19.12.2003


A team of researchers led by scientists at The Scripps Research Institute has discovered a family of proteins that connect the immune system to the body’s lipids - the fat molecules that are a major building block of the human body.



"This is the first time someone has shown how the immune system and lipid metabolism merge," says Associate Professor Luc Teyton, M.D., Ph.D., of Scripps Research. Teyton is the lead author of the study.

In the study, Teyton and his colleagues were examining what is known as a natural killer (NK) T cell. NK T cells are key players in the immune system and have been implicated in autoimmune diseases, such as diabetes, and in cancer--although scientists have not yet discerned exactly how.


NK T cells are unusual in that they fall somewhere between innate and adaptive immunity. They arise in the thymus, and, as mature cells, they stimulate an adaptive immune response and regulate a range of disease states, including diabetes, cancer, and pathogenic infections.

Like other T cells, they express T cell receptors (TCR)--although without the normal antigenic variability. Classical immune recognition involves a process in which variable TCRs recognize various proteins--pieces of protein from foreign pathogens, for instance--when these are presented by "antigen presenting cells" via a molecule called the major histocompatability complex (MHC). MHC molecules are like the burglar alarms that warn the immune system that a pathogen is invading.

However, NK T cells also express the "NK" innate immune cell receptors and may have the ability to see some of the lipids that bacteria like Mycobacterium tuberculosis, the bacteria that cause tuberculosis, display on their outer surface. NK T cells become activated when they bind to a cell surface protein called CD1 that bears an unknown lipidic ligand.

Once the NK T cells bind to CD1, they become activated and begin to secrete a large amount of proteins like interferon-gamma and interleukin-4, which in turn activate helper T cells. The helper T cells then induce specific B cells to unload bursts of soluble antibodies into the bloodstream, and these antibodies ultimately deal with cancerous cells and pathogens.

"These [NK T cells] are the master keys for the regulation of the immune system," says Teyton.

Critical Transfer Protein

Lipid binding to CD1 is not confined to the immune response, though, and endogenous human lipids seem to bind to CD1 as a way of maintaining normal bodily homeostasis.

A few years ago, Teyton was asking how the body loaded natural lipids onto CD1 molecules. He realized that there would have to be another protein inside cells that would transfer the lipid to the CD1 molecule, and so he searched on his computer for possible candidate proteins that could bind to lipids and transfer them onto CD1.

He found a family of genes that encode what are known as lipid transfer proteins, which were already well-characterized because they have been implicated in a number of neurological pediatric diseases. He began investigating whether any of these was the critical transfer protein he sought.

Indeed, one was.

Teyton and his colleagues found that if they removed the gene encoding for the protein prosaposin, they lost all NK T cells. This loss occurred because without prosaposin, the CD1 proteins were never loaded with the lipid, and therefore the NK T cells could not be selected in the thymus of the mutant mice. In addition, using recombinant forms of the saposins molecules, they demonstrated that saposin molecules could efficiently transfer lipids onto CD1d molecules.

Now the researchers are looking at which lipids bind to the CD1 molecules and how they are transported into the cell.


This work was done in very close collaboration with the laboratory of Dr. Albert Bendelac at the University of Chicago.

The research article "Editing of CD1d-Bound Lipid Antigens by Endosomal Lipid Transfer Proteins" is authored by Dapeng Zhou, Carlos Cantu III, Yuval Sagiv, Nicolas Schrantz, Ashok B. Kulkarni, Xiaoyang Qi, Don J. Mahuran, Carlos R. Morales, Gregory A. Grabowski, Kamel Benlagha, Paul Savage, Albert Bendelac, and Luc Teyton and appears in ScienceExpress, the online version of the journal Science on December 18, 2003.

The research was funded by the National Institutes of Health and the Cancer Research Institute.

Jason Bardi | EurekAlert!
Further information:
http://www.scripps.edu/

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>