Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-tech analysis of vineyard soil

21.11.2003


In a special Soil Measurement & Methods section of Vadose Zone Journal, scientists review the state-of-the-art tools for measuring water content in soil



Growing grapes for wine is tightly linked to soil moisture: too little, and the crop can be lost, but an oversupply of water tends to favor leaf development at the expense of fruit quality. It is often difficult to determine which portions of the vineyards require more or less irrigation due to California wine country’s natural geologic variations that control the moisture in soil. These natural variations, which appear over short distances, hamper the ability to map soil moisture of an entire field using conventional measurement techniques. Enter GPR, or ground penetrating radar.

In recent years, many researchers have made progress in the use of GPR as an alternative for TDR, time domain reflectometers, for determining field-scale variations of soil water content. These early TDR sensors came about in the 1980s and utilized the influence of water on the velocity of electromagnetic waves to obtain accurate measurements of soil water content; however, assessment of an entire field remained a tedious task because of the need to install a large number of TDR sensors to adequately cover the field. To overcome these difficulties, scientists have used GPR methods to map a field’s varied soil moisture, as in the case with the California vineyards.


GPR’s high-resolution information can be used to improve vineyard development and management, such as to develop vineyards within uniform "blocks" of soil that have optimal properties, or to improve precision irrigation approaches, says Susan Hubbard, long-time GPR researcher.

"Soil water content information obtained from GPR data can be extremely useful for guiding many environmental, engineering, and agricultural applications, such as in wine making. This is one example of a successful GPR application, but many others can be imagined," she adds.

Hubbard recently joined a group of scientists to review the current state-of-the-art methods for determining soil water content with GPR. This review is one of the contributions to a special section in the November issue of Vadose Zone Journal, published by the Soil Science Society of America (SSSA). Over 20 papers are published in this special section based on the symposium, "Soil Physical Measurements and Methods Symposium," held during the 2002 SSSA Annual Meeting. Fittingly, this symposium was dedicated to the research of C. Topp, one of the founding fathers of TDR.

Sander Huisman, an author of the review says, "After recognizing the dominating role of spatial variability at the field scale, it is now time to deal with it. Clearly, the traditional methods cannot detect these variabilities with sufficient resolution and, therefore, many scientists and practitioners are currently searching for alternative techniques. GPR is certainly one of the most promising methods currently under scrutiny".

Of course, there is still a gap between the advances made in the research community and the practical need for straightforward tools to accurately measure water content at high resolution and over large areas. The authors of the study, however, are confident that increased experience and application of GPR will eventually lead to the acceptance of GPR as one of the possible tools to measure field scale variation of soil water content.


Vadose Zone Journal, www.vadosezonejournal.org, is an all-electronic, peer-reviewed, international publication published by the Soil Science Society of America (SSSA), with the Geological Society of America as cooperator. The mission of the Vadose Zone Journal is to disseminate research and information of the vadose zone, the mostly unsaturated zone between the soil surface and the permanent groundwater table, including soil water flow and the fate and transport of chemicals stemming from agricultural and industrial practices and waste disposal operations.

The American Society of Agronomy (ASA) www.agronomy.org, the Crop Science Society of America (CSSA) www.crops.org and the Soil Science Society of America (SSSA) www.soils.org are educational organizations helping their 11,000+ members advance the disciplines and practices of agronomy, crop and soil sciences by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.vadosezonejournal.org
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Researchers release the brakes on the immune system

18.10.2017 | Health and Medicine

Separating methane and CO2 will become more efficient

18.10.2017 | Life Sciences

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>