Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-tech analysis of vineyard soil

21.11.2003


In a special Soil Measurement & Methods section of Vadose Zone Journal, scientists review the state-of-the-art tools for measuring water content in soil



Growing grapes for wine is tightly linked to soil moisture: too little, and the crop can be lost, but an oversupply of water tends to favor leaf development at the expense of fruit quality. It is often difficult to determine which portions of the vineyards require more or less irrigation due to California wine country’s natural geologic variations that control the moisture in soil. These natural variations, which appear over short distances, hamper the ability to map soil moisture of an entire field using conventional measurement techniques. Enter GPR, or ground penetrating radar.

In recent years, many researchers have made progress in the use of GPR as an alternative for TDR, time domain reflectometers, for determining field-scale variations of soil water content. These early TDR sensors came about in the 1980s and utilized the influence of water on the velocity of electromagnetic waves to obtain accurate measurements of soil water content; however, assessment of an entire field remained a tedious task because of the need to install a large number of TDR sensors to adequately cover the field. To overcome these difficulties, scientists have used GPR methods to map a field’s varied soil moisture, as in the case with the California vineyards.


GPR’s high-resolution information can be used to improve vineyard development and management, such as to develop vineyards within uniform "blocks" of soil that have optimal properties, or to improve precision irrigation approaches, says Susan Hubbard, long-time GPR researcher.

"Soil water content information obtained from GPR data can be extremely useful for guiding many environmental, engineering, and agricultural applications, such as in wine making. This is one example of a successful GPR application, but many others can be imagined," she adds.

Hubbard recently joined a group of scientists to review the current state-of-the-art methods for determining soil water content with GPR. This review is one of the contributions to a special section in the November issue of Vadose Zone Journal, published by the Soil Science Society of America (SSSA). Over 20 papers are published in this special section based on the symposium, "Soil Physical Measurements and Methods Symposium," held during the 2002 SSSA Annual Meeting. Fittingly, this symposium was dedicated to the research of C. Topp, one of the founding fathers of TDR.

Sander Huisman, an author of the review says, "After recognizing the dominating role of spatial variability at the field scale, it is now time to deal with it. Clearly, the traditional methods cannot detect these variabilities with sufficient resolution and, therefore, many scientists and practitioners are currently searching for alternative techniques. GPR is certainly one of the most promising methods currently under scrutiny".

Of course, there is still a gap between the advances made in the research community and the practical need for straightforward tools to accurately measure water content at high resolution and over large areas. The authors of the study, however, are confident that increased experience and application of GPR will eventually lead to the acceptance of GPR as one of the possible tools to measure field scale variation of soil water content.


Vadose Zone Journal, www.vadosezonejournal.org, is an all-electronic, peer-reviewed, international publication published by the Soil Science Society of America (SSSA), with the Geological Society of America as cooperator. The mission of the Vadose Zone Journal is to disseminate research and information of the vadose zone, the mostly unsaturated zone between the soil surface and the permanent groundwater table, including soil water flow and the fate and transport of chemicals stemming from agricultural and industrial practices and waste disposal operations.

The American Society of Agronomy (ASA) www.agronomy.org, the Crop Science Society of America (CSSA) www.crops.org and the Soil Science Society of America (SSSA) www.soils.org are educational organizations helping their 11,000+ members advance the disciplines and practices of agronomy, crop and soil sciences by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.vadosezonejournal.org
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

nachricht Ecological intensification of agriculture
09.09.2016 | Julius-Maximilians-Universität Würzburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>