Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tree root life controls CO2 absorption

21.11.2003


Argonne research published in Science



A new study, published today in Science, indicates that the potential for soils to soak up atmospheric carbon dioxide is strongly affected by how long roots live. Large differences in root replacement rates between forest types might alter current predictions of how carbon absorption by soil will act to ameliorate global warming from excess human-caused carbon dioxide.

The study, by researchers at Argonne National Laboratory, Duke University, University of Illinois at Chicago, and Oak Ridge National Laboratory, was funded primarily by the U.S. Department of Energy Office of Science.


The new study used a novel technique to measure the longevity of roots – the source of some of the carbon that would be transferred by decay into the soil – in trees growing in forest plots infused with a computer-controlled flow of carbon dioxide. The flow was metered to maintain the higher atmospheric carbon dioxide levels predicted to occur in the middle of this century. Such an increase in carbon dioxide, caused by the burning of fossil fuels and clearing of the world’s forests, underlies the global warming that scientists widely believe to have already begun.

The scientists’ measurements revealed that the roots of loblolly pine but not sweetgum trees growing in simulated mid-century air at two experimental sites remained intact far longer and transferred less carbon into soils than scientists had expected.

"Our data showed that fine root replacement varied from 1.2 to 9 years depending on root diameter and forest type," said Argonne environmental scientist Roser Matamala, lead author of the Science article. Co-author William Schlesinger, Dean of Duke’s Nicholas School of the Environment and Earth Sciences, called the root study results "a huge change from dogma, which says that these roots turn over all the time. This really says the roots can last quite a while."

"Some forests would do a better job than others in taking up carbon dioxide from the atmosphere and placing it into the soil," Matamala said. "Pine forests have slow root replacement which decreases the potential to accumulate carbon in the soil in the short-term, while the fast root replacement coupled with increased root production in the sweetgum forest led to a rapid and significant increase in soil carbon".

Some policy makers expect that the surge of human-produced CO2 will boost plant growth enough to remove much of the extra gas from the atmosphere. The assimilated carbon dioxide, converted into carbohydrates during photosynthesis, would thus be stored in plant tissue for long periods, ameliorating the gas’s potential impact on predicted global warming. Under this scenario, significant amounts of residual carbon would ultimately be sequestered in soil particles when roots and other tree parts decay.

"The major implication for greenhouse management strategies is that some forests won’t transfer carbon from the atmosphere to soils at the speed we need them to do it to reduce global warming," said co-author Miquel Gonzalez-Meler at the University of Illinois at Chicago.

To test how a CO2-enriched atmosphere will actually affect the environment, the researchers bathed test plots within a growing loblolly forest near Duke and in plots of sweetgum-dominated woodlands in eastern Tennessee with addition carbon dioxide. At both the Duke and Oak Ridge test sites the extra carbon dioxide is released from arrays of tower-mounted valves that are computer-controlled to ensure levels of the gas expected in the air worldwide by mid-century.

During the first three years of these continuing seven-year experiments, the extra CO2 boosted overall pine growth by 25 percent and sweetgum production by 21 percent, according to the Science report. However, carbon tracer measurements revealed that the fine roots of the trees at the Duke site lasted significantly longer than plant biologists had previously estimated, implying that they are replaced less often and carbon transfer to soil is slow. The fine roots in the Oak Ridge site, however, have a shorter life, and much more of the extra carbon is transferred faster to the soil.

The carbon tracer approach used in the study gives scientists a more accurate way to estimate replacement of roots because it documents how long the carbon actually resides in root tissue. The fact that growing roots are so hard to study without killing them or disturbing their growth has led scientists to overestimate how much carbon from extra doses of carbon dioxide might end up in the soil.

The analysis revealed that the pines showed a root carbon turnover of 4.2 years, and the sweetgums showed a carbon turnover of 1.25 years. Plant biologists had previously estimated that such roots would be replaced once every year in average. Based on this analysis, the larger roots would last even longer, said the scientists. Other carbon tracer studies confirmed that the long root turnover rates are changed by carbon dioxide levels.

"These long root lifetimes suggest that root production and turnover in forests have been overestimated and that sequestration of anthropogenic (human-produced) atmospheric carbon in forest soils may be lower than currently estimated," wrote the paper’s authors.


Other authors are Richard Norby of Oak Ridge National Laboratory and Julie Jastrow of Argonne National Laboratory.

Catherine Foster | EurekAlert!
Further information:
http://www.anl.gov/

More articles from Agricultural and Forestry Science:

nachricht Filling intercropping info gap
16.11.2017 | American Society of Agronomy

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>