Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tree root life controls CO2 absorption

21.11.2003


Argonne research published in Science



A new study, published today in Science, indicates that the potential for soils to soak up atmospheric carbon dioxide is strongly affected by how long roots live. Large differences in root replacement rates between forest types might alter current predictions of how carbon absorption by soil will act to ameliorate global warming from excess human-caused carbon dioxide.

The study, by researchers at Argonne National Laboratory, Duke University, University of Illinois at Chicago, and Oak Ridge National Laboratory, was funded primarily by the U.S. Department of Energy Office of Science.


The new study used a novel technique to measure the longevity of roots – the source of some of the carbon that would be transferred by decay into the soil – in trees growing in forest plots infused with a computer-controlled flow of carbon dioxide. The flow was metered to maintain the higher atmospheric carbon dioxide levels predicted to occur in the middle of this century. Such an increase in carbon dioxide, caused by the burning of fossil fuels and clearing of the world’s forests, underlies the global warming that scientists widely believe to have already begun.

The scientists’ measurements revealed that the roots of loblolly pine but not sweetgum trees growing in simulated mid-century air at two experimental sites remained intact far longer and transferred less carbon into soils than scientists had expected.

"Our data showed that fine root replacement varied from 1.2 to 9 years depending on root diameter and forest type," said Argonne environmental scientist Roser Matamala, lead author of the Science article. Co-author William Schlesinger, Dean of Duke’s Nicholas School of the Environment and Earth Sciences, called the root study results "a huge change from dogma, which says that these roots turn over all the time. This really says the roots can last quite a while."

"Some forests would do a better job than others in taking up carbon dioxide from the atmosphere and placing it into the soil," Matamala said. "Pine forests have slow root replacement which decreases the potential to accumulate carbon in the soil in the short-term, while the fast root replacement coupled with increased root production in the sweetgum forest led to a rapid and significant increase in soil carbon".

Some policy makers expect that the surge of human-produced CO2 will boost plant growth enough to remove much of the extra gas from the atmosphere. The assimilated carbon dioxide, converted into carbohydrates during photosynthesis, would thus be stored in plant tissue for long periods, ameliorating the gas’s potential impact on predicted global warming. Under this scenario, significant amounts of residual carbon would ultimately be sequestered in soil particles when roots and other tree parts decay.

"The major implication for greenhouse management strategies is that some forests won’t transfer carbon from the atmosphere to soils at the speed we need them to do it to reduce global warming," said co-author Miquel Gonzalez-Meler at the University of Illinois at Chicago.

To test how a CO2-enriched atmosphere will actually affect the environment, the researchers bathed test plots within a growing loblolly forest near Duke and in plots of sweetgum-dominated woodlands in eastern Tennessee with addition carbon dioxide. At both the Duke and Oak Ridge test sites the extra carbon dioxide is released from arrays of tower-mounted valves that are computer-controlled to ensure levels of the gas expected in the air worldwide by mid-century.

During the first three years of these continuing seven-year experiments, the extra CO2 boosted overall pine growth by 25 percent and sweetgum production by 21 percent, according to the Science report. However, carbon tracer measurements revealed that the fine roots of the trees at the Duke site lasted significantly longer than plant biologists had previously estimated, implying that they are replaced less often and carbon transfer to soil is slow. The fine roots in the Oak Ridge site, however, have a shorter life, and much more of the extra carbon is transferred faster to the soil.

The carbon tracer approach used in the study gives scientists a more accurate way to estimate replacement of roots because it documents how long the carbon actually resides in root tissue. The fact that growing roots are so hard to study without killing them or disturbing their growth has led scientists to overestimate how much carbon from extra doses of carbon dioxide might end up in the soil.

The analysis revealed that the pines showed a root carbon turnover of 4.2 years, and the sweetgums showed a carbon turnover of 1.25 years. Plant biologists had previously estimated that such roots would be replaced once every year in average. Based on this analysis, the larger roots would last even longer, said the scientists. Other carbon tracer studies confirmed that the long root turnover rates are changed by carbon dioxide levels.

"These long root lifetimes suggest that root production and turnover in forests have been overestimated and that sequestration of anthropogenic (human-produced) atmospheric carbon in forest soils may be lower than currently estimated," wrote the paper’s authors.


Other authors are Richard Norby of Oak Ridge National Laboratory and Julie Jastrow of Argonne National Laboratory.

Catherine Foster | EurekAlert!
Further information:
http://www.anl.gov/

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>