Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After the Forest Fire: Evergreen Needles Prevent Soil Erosion

18.11.2003

Once a raging forest fire is quelled, the next worry is erosion of the landscape. With vegetation destroyed, rain easily washes away the soil, causing large flows of debris and landslides. Erosion endangers sources of drinking water, streams, and roads.

In an unprecedented study, Chris Pannkuk and Peter Robichaud show that scorched evergreen needles can play a key role in preventing erosion after a forest fire. They found that ponderosa pine needles were effective in reducing erosion caused by water running over the soil, and Douglas fir needles were effective in reducing erosion caused by rain hitting and splashing into soil. Their report will appear in Water Resources Research, published by the American Geophysical Union.

These findings can help post-fire rehabilitation teams decide where to apply treatments to reduce erosion. "If you see brown needles in the trees," Robichaud said, "then let’s take advantage of Mother Nature and not add any treatments to that area of the forest."

Wildfires usually burn in mosaics, with patches of low, moderate, and high severity. In areas of low or moderate severity, needles from partially burned conifer trees fall to the ground within a few months after the fire. Robichaud noticed that needle cover seemed to reduce erosion on forest soils after a fire. Since no one had formally studied this effect, he and Pannkuk used an artificial rain laboratory at the U.S. Department of Agriculture’s Forestry Science Laboratory in Moscow, Idaho, to see how much burnt needles could reduce erosion.

They filled four-meter by one-meter [13-foot by 3-foot] boxes, set at a 22-degree slope, with soil taken from burnt forests. After covering the soil with various amounts of scorched ponderosa pine and Douglas fir needles, they applied artificial rain for 25 minutes at an intensity that would simulate 34 millimeters [1.3 inches] of rain per hour. During each test, they also introduced a stream of water at the top of the box to simulate overland water flow.

The researchers collected and analyzed run-off soil and water from the boxes. They found that a 50 percent ground cover of Douglas fir needles reduced water flow erosion by 20 percent and rain-induced erosion by 80 percent. A 50 percent ground cover of ponderosa pine needles reduced water flow erosion by 40 percent and rain-induced erosion by 60 percent.

Robichaud, who has been studying and modeling erosion after prescribed and wildfire for 13 years, directs several treatment effectiveness projects in California, Colorado, Idaho, Montana, Nevada, and Washington. Pannkuk, who worked with Robichaud as a post-doctorate on this project, is currently a natural resources consultant.

Harvey Leifert | AGU

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>