Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wanted: Innovations to feed the hungry

12.11.2003


Columbia economist offers new way to compute prizes for agriculture research



After many decades of economic growth, the single most important cause of human mortality remains malnutrition. The World Health Organization estimates that food deficits cause about 6 million deaths per year, or 14 percent of the total. Surprisingly, most people who die from hunger are actually farmers – not by choice, but by necessity. They are born in rural areas, and have no other resources with which to earn a living. When a farm family’s production falls short of their own food needs, they fall into a downward spiral of malnutrition, ill-health, and even lower production.

In the November issue of AgBioForum, William Masters, director of the Earth Institute’s Center on Globalization and Sustainable Development, proposes a new way of fighting hunger: by giving cash prizes to innovators who develop sustainable techniques that the world’s poor can use to feed themselves.


Prizes have been used to solve many seemingly-intractable problems, from an 18th-century prize for determining longitude at sea, to the 20th century prizes for long-distance flight given to Charles Lindbergh and Amelia Earhart. These prizes work well when governments or philanthropists anticipate that a breakthrough would be valuable, but are unlikely to be easily sold in the marketplace or obtained from university laboratories.

Professor Masters’ approach proposes targeting any increase in the productivity of low-income farmers, using recently-developed measurement methods to compute what each innovation is really worth.

Professor Masters’ proposal is motivated by the magnitude and nature of global hunger. Because the poorest people are farmers, one of the most effective tools in the historical fight against malnutrition has been agricultural research, adapting seed varieties and production techniques to local needs. This type of research consistently pays for itself, often many times over – but the gains are spread over millions of very poor beneficiaries, so the costs of research can’t be recovered locally, either by private-sector innovators through product sales, or by local governments through taxes.

"This mechanism offers a way for philanthropists and foreign-aid donors to pay directly for demonstrated research achievement," says Professor Masters. "We know that people want to pay for good research. This offers a way to find which research is worth funding, using verifiable data from field experiments and farm surveys."

Right now, research achievements are rewarded in one of two main ways. The oldest approach is through universities and public laboratories, paid for by government grants or philanthropy – but these are difficult to steer towards high-priority targets. To make researchers more responsive to people’s needs, governments offer them intellectual property rights over their innovations – but these have value only when a technology’s users can be made to pay for it. Professor Masters’ proposal is intended to help fill the gap between these two methods, to reward innovations that are not now being rewarded through either kind of funding mechanism.

Although it would take some time for new research to generate results on the ground, Masters believes that offering prizes for research results would have an immediate impact, by attracting attention to the fruits of R&D. He said, "I have worked for ten years in West Africa on this issue, and I know dozens of agricultural technologies that are out there right now saving lives. No one rewards these innovators. Prizes would help them spread their ideas to more people, and to develop them further."

"Some of the best innovations come from individuals, often working in non-profits and NGOs – others come from people in universities and public laboratories, and some come from private companies like Monsanto. No one has a monopoly on discovery," said Masters. "This proposal is about rewarding innovation, wherever it comes from."



The Center on Globalization and Sustainable Development (CGSD) was established in July 2002 to research and craft solutions for the pressing international development problems of our time. CGSD manages the social sciences activities of the Earth Institute, such as economics, education, and urban growth. Its hallmark approach involves interdisciplinary collaborations with natural scientists at the Earth Institute, operating on the underlying principle that because development problems cross disciplines - from the environment to disaster preparedness to public health to economic planning - so must the solutions.

The article is:
William A. Masters (2003), "Research Prizes: A Mechanism to Reward Agricultural Innovation in Low-Income Regions" AgBioForum 6(1&2, November): 1-5.

Mary Tobin | EurekAlert!
Further information:
http://www.agbioforum.missouri.edu/
http://www.earthinstitute.columbia.edu/cgsd/people.html

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>