Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Down and dirty: Airborne ozone can alter forest soil

16.10.2003


The industrial pollutant ozone, long known to be harmful to many kinds of plants, can also affect the very earth in which they grow.

Researchers at Michigan Technological University and the North Central Research Station of the USDA Forest Service have discovered that ozone can reduce soil carbon formation - a measure of the amount of organic matter being added to the soil. Their findings are published in the Oct. 16 issue of the journal Nature.

The scientists exposed forest stands to increased levels of two atmospheric pollutants, ozone and carbon dioxide. Soil carbon formation dropped off dramatically in the plots fumigated with a mix of ozone and carbon dioxide compared to carbon dioxide alone.



"This research shows that changes in atmospheric chemistry can cascade through the forest and affect soils," says Dr. Kurt Pregitzer, a coauthor of the Nature paper and a professor in Michigan Tech’s School of Forest Resources and Environmental Science. "Reductions we have observed in plant growth under elevated ozone appear to result in similar reductions in soil carbon formation."

The findings could have implications for the health of forests in areas with high levels of ozone, says Dr. Wendy Loya, the lead author of the paper and a postdoctoral research scientist at Michigan Tech. "Under normal conditions, forest litter, which is made up of fallen leaves, twigs and dead roots, decomposes and releases carbon that is then stored in the soil," she says. "Under conditions of elevated ozone, the amount of soil carbon formed is reduced."

Because increased carbon dioxide tends to cause plants to grow more quickly and take in more carbon from the atmosphere, some scientists and policymakers have speculated that forests could become "carbon sinks," absorbing carbon dioxide and mitigating its greenhouse effects.

However, the soil in the plots exposed to an ozone/carbon dioxide mixture gained only half the carbon as plots fumigated with carbon dioxide alone. Thus, plants and soils may be less able to clean the air of excess carbon dioxide when ozone levels are high.

Ozone pollution occurs at levels known to be toxic to both plants and people in many parts of the United States and throughout the world. It is formed when chemicals produced by burning fossil fuels and from industrial processes react in the presence of sunlight and warm temperatures.


###
In addition to Loya and Pregitzer, other coauthors of the Nature article, "Reduction of Soil Carbon Formation by Tropospheric Ozone Under Elevated Carbon Dioxide," are Dr. John King, an assistant professor of ecosystems at Michigan Tech; and research ecologist Dr. Christian Giardina and ecologist Noah Karberg of the USDA Forest Service.

This research was supported by the US Department of Energy’s Office of Science (BER: Program for Ecosystem Research and National Institute for Global Environmental Change), the USDA Forest Service (Northern Global Change and North Central Research Station), the National Science Foundation (DEB, DBI/MRI), and the USDA Natural Research Initiatives Competitive Grants Program.

The four-year study was conducted at Aspen FACE (Free-Air CO2 Enrichment), the world’s largest, open-air climate-change research facility. Located in Rhinelander, Wis., Aspen FACE opens a window on the future of our northern forests and is the only FACE site where scientists can study the impact of the greenhouse gases carbon dioxide and ozone on forest ecosystems. For more information on Aspen FACE, contact its director, Dr. David Karnosky, karnosky@mtu.edu.

Aspen FACE is funded jointly by the Department of Energy’s Office of Science Program for Ecosystem Research and National Institute for Global Environmental Research; the National Science Foundation; Global Change Program, USDA Forest Service; North Central Research Station, USDA Forest Service; Michigan Technological University; the USDA National Research Initiative Program; Brookhaven National Laboratory; and Natural Resources Canada.

Marcia Goodrich | EurekAlert!
Further information:
http://www.ncfes.umn.edu/

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>