Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Down and dirty: Airborne ozone can alter forest soil

16.10.2003


The industrial pollutant ozone, long known to be harmful to many kinds of plants, can also affect the very earth in which they grow.

Researchers at Michigan Technological University and the North Central Research Station of the USDA Forest Service have discovered that ozone can reduce soil carbon formation - a measure of the amount of organic matter being added to the soil. Their findings are published in the Oct. 16 issue of the journal Nature.

The scientists exposed forest stands to increased levels of two atmospheric pollutants, ozone and carbon dioxide. Soil carbon formation dropped off dramatically in the plots fumigated with a mix of ozone and carbon dioxide compared to carbon dioxide alone.



"This research shows that changes in atmospheric chemistry can cascade through the forest and affect soils," says Dr. Kurt Pregitzer, a coauthor of the Nature paper and a professor in Michigan Tech’s School of Forest Resources and Environmental Science. "Reductions we have observed in plant growth under elevated ozone appear to result in similar reductions in soil carbon formation."

The findings could have implications for the health of forests in areas with high levels of ozone, says Dr. Wendy Loya, the lead author of the paper and a postdoctoral research scientist at Michigan Tech. "Under normal conditions, forest litter, which is made up of fallen leaves, twigs and dead roots, decomposes and releases carbon that is then stored in the soil," she says. "Under conditions of elevated ozone, the amount of soil carbon formed is reduced."

Because increased carbon dioxide tends to cause plants to grow more quickly and take in more carbon from the atmosphere, some scientists and policymakers have speculated that forests could become "carbon sinks," absorbing carbon dioxide and mitigating its greenhouse effects.

However, the soil in the plots exposed to an ozone/carbon dioxide mixture gained only half the carbon as plots fumigated with carbon dioxide alone. Thus, plants and soils may be less able to clean the air of excess carbon dioxide when ozone levels are high.

Ozone pollution occurs at levels known to be toxic to both plants and people in many parts of the United States and throughout the world. It is formed when chemicals produced by burning fossil fuels and from industrial processes react in the presence of sunlight and warm temperatures.


###
In addition to Loya and Pregitzer, other coauthors of the Nature article, "Reduction of Soil Carbon Formation by Tropospheric Ozone Under Elevated Carbon Dioxide," are Dr. John King, an assistant professor of ecosystems at Michigan Tech; and research ecologist Dr. Christian Giardina and ecologist Noah Karberg of the USDA Forest Service.

This research was supported by the US Department of Energy’s Office of Science (BER: Program for Ecosystem Research and National Institute for Global Environmental Change), the USDA Forest Service (Northern Global Change and North Central Research Station), the National Science Foundation (DEB, DBI/MRI), and the USDA Natural Research Initiatives Competitive Grants Program.

The four-year study was conducted at Aspen FACE (Free-Air CO2 Enrichment), the world’s largest, open-air climate-change research facility. Located in Rhinelander, Wis., Aspen FACE opens a window on the future of our northern forests and is the only FACE site where scientists can study the impact of the greenhouse gases carbon dioxide and ozone on forest ecosystems. For more information on Aspen FACE, contact its director, Dr. David Karnosky, karnosky@mtu.edu.

Aspen FACE is funded jointly by the Department of Energy’s Office of Science Program for Ecosystem Research and National Institute for Global Environmental Research; the National Science Foundation; Global Change Program, USDA Forest Service; North Central Research Station, USDA Forest Service; Michigan Technological University; the USDA National Research Initiative Program; Brookhaven National Laboratory; and Natural Resources Canada.

Marcia Goodrich | EurekAlert!
Further information:
http://www.ncfes.umn.edu/

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>