Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using GPR to estimate tree root biomass

24.09.2003


USDA Forest Service (FS) researchers are improving the use of ground-penetrating radar (GPR) to study tree roots nondestructively. They are refining GPR’s processing capabilities by comparing results with those of more invasive methods.


Kurt Johnsen, USDA Forest Service, Southern Research Station uses an air-knife to remove soil from a loblolly pine root system.



GPR is an electromagnetic imaging technique that can be used to detect buried objects or hidden structures. GPR has been used for geological research, archaeology, forensics, and for assessing the integrity of roads and bridges. FS researchers soon recognized the potential for using the technology in forest-based research.

Measuring the belowground growth of trees is essential to understanding forest productivity and carbon allocation. Estimating the biomass of tree roots traditionally involves using soil cores, pits, and trenches--digging up roots, then sieving, washing, drying, and weighing them. These methods are destructive, labor-intensive, and not very useful for measuring the lateral extent of a root system.


In the September/October issue of the Soil Science Society of America Journal (SSSAJ), researchers from the FS Southern Research Station (SRS) unit in Research Triangle Park, NC present the results of a study that assesses ground penetrating radar (GPR) as a fast, noninvasive method to improve estimates of root biomass.

"Knowing both the volume and extent of root systems is important in the carbon sequestration studies we do," says Kurt Johnsen, director of the SRS Biological Foundations of Southern Forest Productivity and Sustainability unit, and co-author of the article with John Butnor and Lance Kress. "Many of the forests in the Southeast grow on land where the soil carbon has been depleted by former farming practices. In these forests, tree roots are the most dynamic pool for carbon accumulation below the ground."

For the carbon flux experiments that Johnsen and fellow researchers conduct at the Free Air Carbon Dioxide Enrichment (FACE) sites in the Duke Forest, they use a sophisticated dynamic gas sampling system to measure the effects of elevated levels of carbon dioxide on living trees. Although they can detect variability above the ground without harming the trees, it is almost impossible to know what is going on below ground. "We need a way to measure how the root system is responding that does not involve destroying it," said Johnsen.

John Butnor, SRS plant physiologist and lead author of the SSSAJ article, has been experimenting with ways to make GPR more accurate by improving the quality of the data through advanced processing techniques, and by calibrating GPR estimates with those from soil cores.

"There are a variety of factors that can affect the resolution of radar profiles of roots. Soil composition can cause background noise that interferes with resolution and alters the results," says Butnor. "For this study, we wanted to look at the full potential of GPR, so we chose a site with soil composition amenable to radar investigations--one with electrically resistive soil of high sand content."

In collaboration with Lisa Samuelson (Auburn University), Butnor and the other researchers used a previously established International Paper study site in Georgia, setting out sample points on plots of loblolly pine that had been fertilized or irrigated or both. For GPR sampling, they passed the radar antenna across in one direction, then the other, electronically marking sampling points on the radar profile. When they finished GPR sampling, the researchers collected soil cores at the sampling points, weighing the washed and dried roots to determine total live biomass.

Butnor found that adding advanced digital processing techniques greatly improved the ability of GPR to accurately estimate root biomass. He was also able to correct for the distorting effects he found in the fertilized plots.

"By closely matching the footprint of the radar antenna to the location of the soil core, we were able to improve root biomass estimation significantly over our previous studies," says Butnor. "The ability to correlate radar data to actual root biomass gives greater confidence in the technique and allows us to continue to make improvements."

The researchers concluded that, in the right conditions, GPR can be used to rapidly estimate root biomass, dramatically reducing the number of soil cores that are usually needed and providing a much clearer picture of the lateral root system as it spreads out beneath the ground.

"We have shown that GPR works very accurately on well-drained soils," says Johnsen. "In a four-hour period, we can collect as much data using GPR as collected from thousands of core samples. More recently we have used GPR on flatwood sites in Florida and on heavy organic matter sites in Canada. We believe that GPR will become a standard tool in forest research, and will someday allow us to do rapid, nondestructive root assessment across many soil types. "

John Butnor | EurekAlert!
Further information:
http://www.srs.fs.fed.us/
http://www.srs.fs.usda.gov/pubs/viewpub.jsp?index=5563

More articles from Agricultural and Forestry Science:

nachricht Combination of Resistance Genes Offers Better Protection for Wheat against Powdery Mildew
22.01.2018 | Universität Zürich

nachricht New study shows producers where and how to grow cellulosic biofuel crops
17.01.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>