Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Using GPR to estimate tree root biomass


USDA Forest Service (FS) researchers are improving the use of ground-penetrating radar (GPR) to study tree roots nondestructively. They are refining GPR’s processing capabilities by comparing results with those of more invasive methods.

Kurt Johnsen, USDA Forest Service, Southern Research Station uses an air-knife to remove soil from a loblolly pine root system.

GPR is an electromagnetic imaging technique that can be used to detect buried objects or hidden structures. GPR has been used for geological research, archaeology, forensics, and for assessing the integrity of roads and bridges. FS researchers soon recognized the potential for using the technology in forest-based research.

Measuring the belowground growth of trees is essential to understanding forest productivity and carbon allocation. Estimating the biomass of tree roots traditionally involves using soil cores, pits, and trenches--digging up roots, then sieving, washing, drying, and weighing them. These methods are destructive, labor-intensive, and not very useful for measuring the lateral extent of a root system.

In the September/October issue of the Soil Science Society of America Journal (SSSAJ), researchers from the FS Southern Research Station (SRS) unit in Research Triangle Park, NC present the results of a study that assesses ground penetrating radar (GPR) as a fast, noninvasive method to improve estimates of root biomass.

"Knowing both the volume and extent of root systems is important in the carbon sequestration studies we do," says Kurt Johnsen, director of the SRS Biological Foundations of Southern Forest Productivity and Sustainability unit, and co-author of the article with John Butnor and Lance Kress. "Many of the forests in the Southeast grow on land where the soil carbon has been depleted by former farming practices. In these forests, tree roots are the most dynamic pool for carbon accumulation below the ground."

For the carbon flux experiments that Johnsen and fellow researchers conduct at the Free Air Carbon Dioxide Enrichment (FACE) sites in the Duke Forest, they use a sophisticated dynamic gas sampling system to measure the effects of elevated levels of carbon dioxide on living trees. Although they can detect variability above the ground without harming the trees, it is almost impossible to know what is going on below ground. "We need a way to measure how the root system is responding that does not involve destroying it," said Johnsen.

John Butnor, SRS plant physiologist and lead author of the SSSAJ article, has been experimenting with ways to make GPR more accurate by improving the quality of the data through advanced processing techniques, and by calibrating GPR estimates with those from soil cores.

"There are a variety of factors that can affect the resolution of radar profiles of roots. Soil composition can cause background noise that interferes with resolution and alters the results," says Butnor. "For this study, we wanted to look at the full potential of GPR, so we chose a site with soil composition amenable to radar investigations--one with electrically resistive soil of high sand content."

In collaboration with Lisa Samuelson (Auburn University), Butnor and the other researchers used a previously established International Paper study site in Georgia, setting out sample points on plots of loblolly pine that had been fertilized or irrigated or both. For GPR sampling, they passed the radar antenna across in one direction, then the other, electronically marking sampling points on the radar profile. When they finished GPR sampling, the researchers collected soil cores at the sampling points, weighing the washed and dried roots to determine total live biomass.

Butnor found that adding advanced digital processing techniques greatly improved the ability of GPR to accurately estimate root biomass. He was also able to correct for the distorting effects he found in the fertilized plots.

"By closely matching the footprint of the radar antenna to the location of the soil core, we were able to improve root biomass estimation significantly over our previous studies," says Butnor. "The ability to correlate radar data to actual root biomass gives greater confidence in the technique and allows us to continue to make improvements."

The researchers concluded that, in the right conditions, GPR can be used to rapidly estimate root biomass, dramatically reducing the number of soil cores that are usually needed and providing a much clearer picture of the lateral root system as it spreads out beneath the ground.

"We have shown that GPR works very accurately on well-drained soils," says Johnsen. "In a four-hour period, we can collect as much data using GPR as collected from thousands of core samples. More recently we have used GPR on flatwood sites in Florida and on heavy organic matter sites in Canada. We believe that GPR will become a standard tool in forest research, and will someday allow us to do rapid, nondestructive root assessment across many soil types. "

John Butnor | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>