Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using GPR to estimate tree root biomass

24.09.2003


USDA Forest Service (FS) researchers are improving the use of ground-penetrating radar (GPR) to study tree roots nondestructively. They are refining GPR’s processing capabilities by comparing results with those of more invasive methods.


Kurt Johnsen, USDA Forest Service, Southern Research Station uses an air-knife to remove soil from a loblolly pine root system.



GPR is an electromagnetic imaging technique that can be used to detect buried objects or hidden structures. GPR has been used for geological research, archaeology, forensics, and for assessing the integrity of roads and bridges. FS researchers soon recognized the potential for using the technology in forest-based research.

Measuring the belowground growth of trees is essential to understanding forest productivity and carbon allocation. Estimating the biomass of tree roots traditionally involves using soil cores, pits, and trenches--digging up roots, then sieving, washing, drying, and weighing them. These methods are destructive, labor-intensive, and not very useful for measuring the lateral extent of a root system.


In the September/October issue of the Soil Science Society of America Journal (SSSAJ), researchers from the FS Southern Research Station (SRS) unit in Research Triangle Park, NC present the results of a study that assesses ground penetrating radar (GPR) as a fast, noninvasive method to improve estimates of root biomass.

"Knowing both the volume and extent of root systems is important in the carbon sequestration studies we do," says Kurt Johnsen, director of the SRS Biological Foundations of Southern Forest Productivity and Sustainability unit, and co-author of the article with John Butnor and Lance Kress. "Many of the forests in the Southeast grow on land where the soil carbon has been depleted by former farming practices. In these forests, tree roots are the most dynamic pool for carbon accumulation below the ground."

For the carbon flux experiments that Johnsen and fellow researchers conduct at the Free Air Carbon Dioxide Enrichment (FACE) sites in the Duke Forest, they use a sophisticated dynamic gas sampling system to measure the effects of elevated levels of carbon dioxide on living trees. Although they can detect variability above the ground without harming the trees, it is almost impossible to know what is going on below ground. "We need a way to measure how the root system is responding that does not involve destroying it," said Johnsen.

John Butnor, SRS plant physiologist and lead author of the SSSAJ article, has been experimenting with ways to make GPR more accurate by improving the quality of the data through advanced processing techniques, and by calibrating GPR estimates with those from soil cores.

"There are a variety of factors that can affect the resolution of radar profiles of roots. Soil composition can cause background noise that interferes with resolution and alters the results," says Butnor. "For this study, we wanted to look at the full potential of GPR, so we chose a site with soil composition amenable to radar investigations--one with electrically resistive soil of high sand content."

In collaboration with Lisa Samuelson (Auburn University), Butnor and the other researchers used a previously established International Paper study site in Georgia, setting out sample points on plots of loblolly pine that had been fertilized or irrigated or both. For GPR sampling, they passed the radar antenna across in one direction, then the other, electronically marking sampling points on the radar profile. When they finished GPR sampling, the researchers collected soil cores at the sampling points, weighing the washed and dried roots to determine total live biomass.

Butnor found that adding advanced digital processing techniques greatly improved the ability of GPR to accurately estimate root biomass. He was also able to correct for the distorting effects he found in the fertilized plots.

"By closely matching the footprint of the radar antenna to the location of the soil core, we were able to improve root biomass estimation significantly over our previous studies," says Butnor. "The ability to correlate radar data to actual root biomass gives greater confidence in the technique and allows us to continue to make improvements."

The researchers concluded that, in the right conditions, GPR can be used to rapidly estimate root biomass, dramatically reducing the number of soil cores that are usually needed and providing a much clearer picture of the lateral root system as it spreads out beneath the ground.

"We have shown that GPR works very accurately on well-drained soils," says Johnsen. "In a four-hour period, we can collect as much data using GPR as collected from thousands of core samples. More recently we have used GPR on flatwood sites in Florida and on heavy organic matter sites in Canada. We believe that GPR will become a standard tool in forest research, and will someday allow us to do rapid, nondestructive root assessment across many soil types. "

John Butnor | EurekAlert!
Further information:
http://www.srs.fs.fed.us/
http://www.srs.fs.usda.gov/pubs/viewpub.jsp?index=5563

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>