Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving fertilizer efficiency

23.09.2003


A new study suggests in-season nitrogen monitoring can reduce overall fertilizer use


Many producers currently base nitrogen fertilizer applications on the results of soil nitrate tests. According to a recent article in the Soil Science Society of America Journal, farmers can reduce in-season nitrogen use for irrigated crops without sacrificing yield potential by using commercially available nitrogen sensing tools.

The typical spring soil nitrate tests do not account for nitrate loss or gain between soil sampling and planting, notes Kevin Bronson, associate professor of soil fertility and nutrient management with the Texas Agricultural Experiment Station. His study suggests in-season monitoring may lead to more accurate nitrogen fertilizer recommendations. Bronson led an interdisciplinary team of scientists to test in-season nitrogen using monitoring tools at two irrigated west Texas cotton sites in 2000 and 2001.

Based on spectroradiometer and chlorophyll meter readings, the team applied 30 pounds per acre of nitrogen in-season to their plots when indicated at early squaring, early bloom and peak bloom.



In 2000, they applied 30 to 90 pounds per acre less nitrogen than a soil-test recommendation of 120 lbs. per acre and achieved yields similar to plants receiving 120 pounds per acre. In 2001, cotton yields reached their goal of 2.5 bales per acre.

"In-season nitrogen sensing won’t replace spring soil nitrate tests," Bronson says. "It can, however, reduce in-season nitrogen fertilizer rates in low-yielding seasons and it can help match soil test recommendations for yield potential in high-yielding seasons. We still recommend pre-plant soil testing to accurately gauge early season nitrogen needs when plants are too small to use monitoring instruments, and for determining nutrient needs besides nitrogen."

In addition to helping producers save dollars by reducing nitrogen applications, these monitoring tools can help protect ground and surface waters from nitrate contamination by reducing the amount of residual nitrate nitrogen in the soil at harvest, Bronson adds

Tess Chua of Texas A&M is the senior author on the paper. Co-authors include Jon Booker, Wayne Keeling, Jim Bordovsky and Robert Lascano, Texas A&M University; Cary Green and Eduardo Segarra, Texas Tech University; and Arvin Mosier, USDA-ARS.



Soil Science Society of America Journal (SSSAJ), http://soil.scijournals.org is a peer-reviewed, international journal of soil science published six times a year by the Soil Science Society of America. SSSA Journal contains soil research relating to physics; chemistry; biology and biochemistry; fertility and plant nutrition; genesis, morphology, and classification; water management and conservation; forest and range soils; nutrient management and soil and plant analysis; mineralogy; and wetland soils.

The American Society of Agronomy (ASA) www.agronomy.org, the Crop Science Society of America (CSSA) www.crops.org and the Soil Science Society of America (SSSA) www.soils.org are educational organizations helping their 10,000+ members advance the disciplines and practices of agronomy, crop, soil sciences, and related fields by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of membership services.

Sara Uttech | EurekAlert!
Further information:
http://www.asa-cssa-sssa.org/
http://soil.scijournals.org
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>