Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Evaluation of the factors controlling nitrogen oxide emissions in meadowlands


Agriculture is responsible for 8% of the total emissions of greenhouse effect gases and so, given the EU adhesion to the 1997 Kyoto protocol, it is obliged to assume a certain percentage in the reduction of these emissions. 41% of nitrous oxide (N2O) emissions of human origin in Europe comes from agriculture. The soil, through microbic processes of nitrification and denitrification, is deemed to be mainly responsible for these N2O emissions, contributing to NO emissions also.

Meadowlands form a system with a high potential for the emission of these gases, given their high quantity of organic material and the high levels of fertilisation to which intensive agriculture subjects them. In this study the following factors in N2O and NO emission in meadowlands have been investigated: fertilisation, the water content in the soil, tillage and the use of nitrification inhibitors.

The results obtained indicate that the clay soils studied in the Basque Country show a high level of nitrification. As a consequence, the Nitrogen from applications of organic residues is quickly transformed into a mineral Nitrogen which is susceptible to loss to the atmosphere in the form of oxides of Nitrogen and mainly as a consequence of nitrification. The addition of inhibitors of nitrification is a recommended practice for this type of fertiliser. The N2O emissions derived from mineral fertilisation with ammmonium calcium nitrate are mainly produced through desnitrification, and it is therefore recommended to adjust the mineral fertiliser rather than have to use it in conjunction with DCD. Practices like tillage have a negative effect, provoking N2O and NO emissions even over and above the levels recorded in highly fertilised but untilled areas. Given that it is common practice to dig up a field for the cultivation of forage maize, tillage using nitrogen-based fertilisation should be well-spaced so as to avoid high NO and N2O emissions

Pilar Merino Pereda | Basque research
Further information:

More articles from Agricultural and Forestry Science:

nachricht “How trees coexist” – new findings from biodiversity research published in Nature Communications
21.03.2018 | Technische Universität Dresden

nachricht Earlier flowering of modern winter wheat cultivars
20.03.2018 | Georg-August-Universität Göttingen

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

New 4-D printer could reshape the world we live in

21.03.2018 | Life Sciences

Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

21.03.2018 | Trade Fair News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>