Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pampered porkers and woolly well-being

19.09.2003


A CSIRO Livestock Industries researcher, Dr Caroline Kerr, will use an award from the Australian Government Department of Agriculture, Fisheries and Forestry to ascertain whether certain immune system molecules can be used to reduce livestock stress levels.



Dr Kerr is the Australian Wool Innovation winner and one of 18 researchers and innovators to be awarded the 2003 Science and Innovation Award for Young People in Agriculture, Fisheries and Forestry.

Presented in Canberra by the Minister for Agriculture Fisheries and Forestry, the Hon. Warren Truss, the awards include grants of up to $8,000 to facilitate recipients’ long-term research into areas that will benefit their industries.


Dr Kerr will look into the role suppressors of cytokine signaling (SOCS) molecules play in varying stress levels and growth performance in pigs and sheep.

"Research has shown that even though livestock animals may appear to be happy and comfortable, low levels of stress will limit their capacity to grow," Dr Kerr says.

Learning more about the conduits of stress in livestock animals will provide important benefits to producers and consumers.

"Animals live with stresses we can all relate to, such as heat stress on a hot day, stress from illnesses and ’animal to animal’ tensions," Dr Kerr says.

"These tension factors can affect how the animal’s brain and immune system works, which then affects their ability to fight diseases and grow. Not surprisingly, a stressed animal doesn’t grow as fast as a relaxed animal," she says.

"It is difficult to manage what you can’t measure. By gaining an improved understanding of how stress pathways work to determine measurements of stress, we can better manage this factor."

Dr Kerr’s research will focus on identifying the role the SOCS-2 immune protein plays in the stress pathway of pigs and sheep.

"So far, most of the SOCS proteins have only been identified in humans and rodents. In mice, when the SOCS-2 is removed, mice grow much larger. It may be that SOCS-2 can provide a measure of stress in livestock animals," Dr Kerr says.

By identifying measurements of livestock stress, management practices and breeding systems can be changed to improve animal welfare.

"It may be possible to manipulate the SOCS-2 pathways to adjust an animal’s response to stress. This would be of value during times of unavoidable stress, such as transport and weaning. Also, genes within the pathway would be candidate marker genes for breeding stress-tolerant livestock," she says.

The awards enable young people to undertake innovative projects related to an agriculture, fisheries, forestry or natural resource management related industry and are managed by the Bureau of Rural Sciences in the Australian Government Department of Agriculture, Fisheries and Forestry.

"It is vital that we encourage young Australians wishing to undertake innovative research - in the laboratory or on the farm - that will help boost the competitiveness of our rural industries and the long-term viability of our regional communities," says Mr Truss.

More information:
Dr Caroline Kerr or Ms Veronica Toohey, CSIRO, 07 3214 2960
For more information on the awards:
Ms Sonia Fedorow, BRS, 02 6272 4271, 0411 241 460

Bill Stephens | CSIRO
Further information:
http://www.csiro.au/index.asp?type=mediaRelease&id=Prporkers
http://www.affa.gov.au/scienceawards

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>