Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop faster, more accurate test for mad cow disease

08.09.2003


As U.S. consumers seek reassurance that their hamburgers and steaks are free of deadly mad cow disease, researchers at the University of California-San Francisco say they may have found a promising solution. They’ve developed a faster, more reliable test for identifying the disease, possibly even in living cows. Current tests can only detect the disease after the cow dies.



The test was described today at the 226th national meeting of the American Chemical Society, the world’s largest scientific society.

Critics argue that the standard immunoassay tests used to identify the infectious prion proteins that cause mad cow disease are inadequate for large scale screening of cattle. The tests can produce false readings and may take a week to yield results. A better test is needed, they say.


The new test, which has already undergone animal studies, seems to fit the bill. Called the conformation-dependent immunoassay (CDI), it can detect prion proteins with 100 percent accuracy at much smaller levels than conventional tests and only takes about five hours to produce results, according to the UCSF researchers.

Like conventional tests, the new test is designed for detecting prions in the brain tissue of cows only upon autopsy. Unlike other tests, however, the new test also shows promise for detecting the proteins in muscle tissue and even blood while the animal is still alive. If so, it could be used to identify precisely which animals are infected before they show symptoms and could help end the current practice of slaughtering whole herds, the scientists say.

"This represents a new generation of prion tests," says project leader Dr. Jiri G. Safar, M.D., an associate adjunct professor at UCSF. "It is the most promising test to date for accurately detecting prion proteins," says Safar, a member of the school’s Institute of Neurodegenerative Diseases.

He says the test has been used in a field trial to check for signs of the disease in the brains of 11,000 slaughtered cows in Spain, the United Kingdom and Germany. Results were compared to those from standard immunoassays performed on the same animals. There were no discrepancies between the tests, he says.

"We had a perfect score. There were no false positives and no false negatives," says Safar. "We can’t afford incorrect conclusions, and we didn’t see that in our tests."

He says that the research group plans to use the test on an even larger scale among European cattle herds within the next year, checking them for signs of the disease upon autopsy. If further tests prove successful, he hopes it will eventually be used to evaluate dead cows in this country for mad cow disease, also known as bovine spongiform encephelopathy, or BSE.

Despite the fact that the CDI test is currently being done in dead cattle, Safar says the same test could eventually be used on live animals to determine the presence of prions. In lab tests, the researcher has used the CDI test to detect prions in the muscles of living mice.

The live test could eventually be used to screen patients for the human form of mad cow disease, known as variant Creutzfeldt-Jakob disease, which is thought to be acquired from eating infected beef. A tissue or blood test for live animals could be available in a year, says Safar. "We’re not quite there yet," he adds. "We still need to validate the effectiveness of CDI in live farm animals."

CDI has other advantages. It is automated, allowing larger numbers of animals to be screened in a short period. The test can detect up to eight different strains of prions, including those that cause scrapie in sheep and chronic wasting disease in deer.

With the recent detection of mad cow disease in neighboring Canada and the temporary ban on beef imported from that country, critics have stepped up their call for better testing. To date, there has never been a case of mad cow disease detected in the U.S. Given the flaws of current testing, however, some experts believe it could be just a matter of time.

Safar’s coauthor in this study is Dr. Stanley Prusiner, M.D., a professor of neurology and biochemistry at the university and director of its Institute for Neurodegenerative Diseases. Prusiner was the first to discover that abnormal prion proteins can cause disease, an accomplishment that won him the 1997 Nobel Prize in Physiology or Medicine.

CDI technology is now licensed to InPro Biotechnology, Inc., of San Francisco, a company founded by Prusiner.

Funding for this study was provided by grants from the National Institutes of Health, the United Kingdom’s Department for Environment, Food and Rural Affairs and private sources.


The paper on this research, ANYL 12, will be presented at 2:30 p.m. on Sunday, Sept. 7, at the Javits Convention Center, Room 1A01/1A02, during the "Diagnostic Assays for Prion Diseases" symposium.

Jiri G. Safar, M.D., is an associate adjunct professor at the University of California-San Francisco and a member of the school’s Institute of Neurodegenerative Disorders.

Stanley B. Prusiner, M.D., is a professor of neurology and biochemistry at UCSF and director of its Institute for Neurodegenerative Diseases. He is the recipient of the 1997 Nobel Prize in Physiology or Medicine.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org/

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>