Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop faster, more accurate test for mad cow disease

08.09.2003


As U.S. consumers seek reassurance that their hamburgers and steaks are free of deadly mad cow disease, researchers at the University of California-San Francisco say they may have found a promising solution. They’ve developed a faster, more reliable test for identifying the disease, possibly even in living cows. Current tests can only detect the disease after the cow dies.



The test was described today at the 226th national meeting of the American Chemical Society, the world’s largest scientific society.

Critics argue that the standard immunoassay tests used to identify the infectious prion proteins that cause mad cow disease are inadequate for large scale screening of cattle. The tests can produce false readings and may take a week to yield results. A better test is needed, they say.


The new test, which has already undergone animal studies, seems to fit the bill. Called the conformation-dependent immunoassay (CDI), it can detect prion proteins with 100 percent accuracy at much smaller levels than conventional tests and only takes about five hours to produce results, according to the UCSF researchers.

Like conventional tests, the new test is designed for detecting prions in the brain tissue of cows only upon autopsy. Unlike other tests, however, the new test also shows promise for detecting the proteins in muscle tissue and even blood while the animal is still alive. If so, it could be used to identify precisely which animals are infected before they show symptoms and could help end the current practice of slaughtering whole herds, the scientists say.

"This represents a new generation of prion tests," says project leader Dr. Jiri G. Safar, M.D., an associate adjunct professor at UCSF. "It is the most promising test to date for accurately detecting prion proteins," says Safar, a member of the school’s Institute of Neurodegenerative Diseases.

He says the test has been used in a field trial to check for signs of the disease in the brains of 11,000 slaughtered cows in Spain, the United Kingdom and Germany. Results were compared to those from standard immunoassays performed on the same animals. There were no discrepancies between the tests, he says.

"We had a perfect score. There were no false positives and no false negatives," says Safar. "We can’t afford incorrect conclusions, and we didn’t see that in our tests."

He says that the research group plans to use the test on an even larger scale among European cattle herds within the next year, checking them for signs of the disease upon autopsy. If further tests prove successful, he hopes it will eventually be used to evaluate dead cows in this country for mad cow disease, also known as bovine spongiform encephelopathy, or BSE.

Despite the fact that the CDI test is currently being done in dead cattle, Safar says the same test could eventually be used on live animals to determine the presence of prions. In lab tests, the researcher has used the CDI test to detect prions in the muscles of living mice.

The live test could eventually be used to screen patients for the human form of mad cow disease, known as variant Creutzfeldt-Jakob disease, which is thought to be acquired from eating infected beef. A tissue or blood test for live animals could be available in a year, says Safar. "We’re not quite there yet," he adds. "We still need to validate the effectiveness of CDI in live farm animals."

CDI has other advantages. It is automated, allowing larger numbers of animals to be screened in a short period. The test can detect up to eight different strains of prions, including those that cause scrapie in sheep and chronic wasting disease in deer.

With the recent detection of mad cow disease in neighboring Canada and the temporary ban on beef imported from that country, critics have stepped up their call for better testing. To date, there has never been a case of mad cow disease detected in the U.S. Given the flaws of current testing, however, some experts believe it could be just a matter of time.

Safar’s coauthor in this study is Dr. Stanley Prusiner, M.D., a professor of neurology and biochemistry at the university and director of its Institute for Neurodegenerative Diseases. Prusiner was the first to discover that abnormal prion proteins can cause disease, an accomplishment that won him the 1997 Nobel Prize in Physiology or Medicine.

CDI technology is now licensed to InPro Biotechnology, Inc., of San Francisco, a company founded by Prusiner.

Funding for this study was provided by grants from the National Institutes of Health, the United Kingdom’s Department for Environment, Food and Rural Affairs and private sources.


The paper on this research, ANYL 12, will be presented at 2:30 p.m. on Sunday, Sept. 7, at the Javits Convention Center, Room 1A01/1A02, during the "Diagnostic Assays for Prion Diseases" symposium.

Jiri G. Safar, M.D., is an associate adjunct professor at the University of California-San Francisco and a member of the school’s Institute of Neurodegenerative Disorders.

Stanley B. Prusiner, M.D., is a professor of neurology and biochemistry at UCSF and director of its Institute for Neurodegenerative Diseases. He is the recipient of the 1997 Nobel Prize in Physiology or Medicine.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org/

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>