Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly found gene resistant to economically crippling wheat disease

21.08.2003


Stephen Goodwin’s wheat research may lead to a reduction in the amount of grain lost to leaf blotch. Goodwin is an associate professor of botany and plant pathology at Purdue University. (Agricultural Communications photo/Tom Campbell)


Bread wheat plants carrying a newly discovered gene that is resistant to economically devastating leaf blotch can reduce the amount of grain lost to the pathogen, according to Purdue University researchers.

The scientists used bread wheat species to find the gene and the markers, or bits of DNA, that indicate presence of the naturally occurring gene. The fungus causes wheat crop damage worldwide with yield losses of 50 percent or more in some places. In the United States the disease is widespread in the Pacific Northwest, the northern Great Plains and the eastern Midwest soft wheat region, and experts estimate annual losses at $275 million.

Results of the Purdue study on resistance to the fungus that causes Septoria tritici leaf blotch are published in the September issue of Phytopathology and appear on the journal’s Web site.



"The goal of our work is to find additional resistance genes to the fungus Mycosphaerella graminicola so we can use the lines carrying these genes in our wheat to avoid the breakdown of resistance in the plants," said Stephen Goodwin, associate professor of botany and plant pathology and U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) scientist. "Having the markers greatly speeds up the breeding process for resistant plants."

The markers facilitate finding plants with the pathogen resistance gene. As soon as a seedling sprouts, a small piece of the young leaf can be ground and then a DNA test can be run. This shows whether the markers are present.

"Using the markers, in a few days you can tell which plants have the resistance gene and which don’t," Goodwin said.

The researchers discovered the gene Stb8, so named because it is the eighth gene known to provide resistance to Septoria tritici leaf blotch (STB). However, this gene has some differences compared with the ones found previously, Goodwin said.

Several of the previously found genes conferred resistance on bread wheat plants for only a few years – up to about 15 years. Stb8 has genetic characteristics that may allow it to be effective for a much longer period of time, Goodwin said.

The genome containing Stb8 originated from a pasta wheat parent, which is resistant to most strains of the fungus. This may extend the usefulness of the resistance gene for bread wheat.

The specific location of Stb8 on the genome is different than all the previously known resistance genes for wheat blotch. This site should allow Stb8 to be combined with other genes that also offer some protection against the disease, thereby increasing plants’ resistance.

Stb8 and its markers are naturally occurring in wheat lines already in use, so they can be used immediately for farmers’ breeding programs to gain protection against leaf blotch, Goodwin said.

The long-term goal of the research of leaf blotch resistance genes is to learn about the molecular pathways that allow the plants to respond to pathogens, he said.

"If we can understand these biochemical processes that lead to resistance, then in the future we may learn how to modify them to make these genes more durable," Goodwin said.

Though different resistance genes seem to work more effectively in different parts of the world, the pathogen is easily spread, especially in today’s world of fast transportation. The fungus is spread and grows by spores and it can survive in dried leaves for a very long time, Goodwin said.

"We even store them that way, sometimes for years," he said. "If you keep the leaf dry, it won’t decay and the pathogen just sits there. Or you can freeze it at —80 C, thaw it, and then spray it with water – it will start growing."

Leaf blotch doesn’t kill plants, but it weakens them sufficiently to cause significant crop loss. Purdue scientists determined resistance to the fungus by observing whether the disease appeared on the leaves of adult plants and by measuring the number of spores present. This particular disease seems to affect young plants and adult plants to the same degree.

The other researchers involved in this study are Tika Adhikari, USDA-ARS and Department of Botany and Plant Pathology postdoctoral fellow, and Joseph Anderson, USDA-ARS scientist and Purdue Department of Agronomy assistant professor.

The USDA-ARS provided funding for this study.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu
Source: Stephen Goodwin, (765) 494-4635, sgoodwin@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/030820.Goodwin.resist.html
http://www.apsnet.org/phyto/
http://www.btny.purdue.edu/Faculty/Goodwin/

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>