Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New tool helps researchers bone up on osteoporosis


Purdue University scientists investigating osteoporosis in laying hens have shown that a noninvasive tool can monitor birds’ bone strength and aid in discovering genetic information about bone disease in chickens.

Lack of calcium in chickens’ food and lack of exercise can leave hens with brittle bones, said Patricia "Scotti" Hester, a professor in Purdue’s Department of Animal Sciences. In addition, eggshell production leaches calcium from hens’ bones. Hester and her research team found they could accurately determine bone mineral density using a technology known as dual energy X-ray absorptiometry (DEXA).

Their study is published in the August issue of the journal Poultry Science and also appears on the publication’s Web site.

"The brittle bone problem has evolved gradually over the past quarter of a century," Hester said. "This is due to generally selecting chickens for increased egg numbers, and smaller bird sizes for improved feed efficiency. Also, little emphasis has been placed on selecting for skeletal integrity."

Skeletal integrity in hens also decreases during management practices used to improve shell quality and lengthen a bird’s production life, Hester said. Previous studies by other researchers have found that osteoporosis accounts for 15 percent to 30 percent of total fatalities in hens.

"If we can find genes associated with osteoporosis, we can use genetic selection to improve skeletal integrity," Hester said. "We hope that this will be a way to reduce the incidence of brittle bones because of the considerable variation in bone mineral density that we’ve found among hens."

Various researchers also are studying other factors that contribute to brittle bones in poultry.

"Osteoporosis in chickens is an animal well-being issue," Hester said. "Breeding, diet and exercise all play a vital role in skeletal integrity of laying hens."

Her team conducted two experiments for this study of skeletal integrity. One experiment assessed bone strength in live white leghorn hens at 36, 46 and 56 weeks old, while the second experiment dealt with 38-, 48- and 58-week-old hens.

In both experiments, a third of the chickens received a low-calcium diet, a third an average diet and a third a high-calcium diet. The scientists showed that more calcium resulted in greater bone mineral density and stronger bones and that the DEXA machine could accurately record those differences.

Results of this study showed that the hens fed a low-calcium diet produced fewer eggs. The eggshells they produced also were significantly thinner and weighed less than the birds fed an average to high amount of calcium.

Though the researchers aren’t specifically seeking answers to human osteoporosis, they may find some.

Evolutionary biology has shown that many of the same or similar genes are found in different plants and animals. So, studying one species often leads to information to help with research in another plant or animals. Chickens already are used for other biomedical studies, including embryo development and birth defects, because of some known gene similarities.

Last year, the National Human Genome Research Institute, part of the National Institutes of Health, placed chickens on the high priority list for sequencing of the bird’s genetic makeup. The institute’s program is directed at comparing genomes of plants, animals and humans to determine similarities and differences that make them susceptible or resistant to various diseases and developmental problems.

In the meantime, discovering genetic methods to lessen osteoporosis is of immediate concern to the egg industry.

Before the bone-weakening disease became so widespread in poultry, the approximately 45 million laying hens disposed of annually in the United States were sold to soup manufacturers. But osteoporosis caused so many bone splinters in meat that it couldn’t be used for human consumption. Now most of the soup meat comes from broiler, or meat-type, chickens, rather than egg-laying hens.

"If the skeletal integrity of laying hens can be improved to reduce splintered bones, then perhaps the soup market can be regained at 25 cents or more per chicken," Hester said.

Many farmers now must pay to have the birds hauled away or give them away free, she said. If hens are not processed for meat, then producers need an environmentally safe and economical way to dispose of the birds once their egg-producing days are over.

The estimated U.S. annual economic loss because the egg layers aren’t used for meat products is $18 million, Hester said.

Other researchers involved in the study include: Diane Moody, Purdue assistant professor of animal sciences; graduate students Melissa Schreiweis and Helenice Mazzuco; animals scientists Joseph Orban of Southern University, Shreveport, La.; and Monica Ledur of Embrapa Swine and Poultry Research Center in Concordia, Brazil.

The U.S. Department of Agriculture Scientific Cooperation Research Program, the National Research Initiative Competitive Grants Program and the State of Indiana Value-Added Grant Fund provided support for this study.

Writer: Susan A. Steeves, 765-496-7481,

Sources: Patricia "Scotti" Hester, 765-494-8091,

Susan A. Steeves | Purdue University
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>