Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tool helps researchers bone up on osteoporosis

18.08.2003


Purdue University scientists investigating osteoporosis in laying hens have shown that a noninvasive tool can monitor birds’ bone strength and aid in discovering genetic information about bone disease in chickens.

Lack of calcium in chickens’ food and lack of exercise can leave hens with brittle bones, said Patricia "Scotti" Hester, a professor in Purdue’s Department of Animal Sciences. In addition, eggshell production leaches calcium from hens’ bones. Hester and her research team found they could accurately determine bone mineral density using a technology known as dual energy X-ray absorptiometry (DEXA).

Their study is published in the August issue of the journal Poultry Science and also appears on the publication’s Web site.



"The brittle bone problem has evolved gradually over the past quarter of a century," Hester said. "This is due to generally selecting chickens for increased egg numbers, and smaller bird sizes for improved feed efficiency. Also, little emphasis has been placed on selecting for skeletal integrity."

Skeletal integrity in hens also decreases during management practices used to improve shell quality and lengthen a bird’s production life, Hester said. Previous studies by other researchers have found that osteoporosis accounts for 15 percent to 30 percent of total fatalities in hens.

"If we can find genes associated with osteoporosis, we can use genetic selection to improve skeletal integrity," Hester said. "We hope that this will be a way to reduce the incidence of brittle bones because of the considerable variation in bone mineral density that we’ve found among hens."

Various researchers also are studying other factors that contribute to brittle bones in poultry.

"Osteoporosis in chickens is an animal well-being issue," Hester said. "Breeding, diet and exercise all play a vital role in skeletal integrity of laying hens."

Her team conducted two experiments for this study of skeletal integrity. One experiment assessed bone strength in live white leghorn hens at 36, 46 and 56 weeks old, while the second experiment dealt with 38-, 48- and 58-week-old hens.

In both experiments, a third of the chickens received a low-calcium diet, a third an average diet and a third a high-calcium diet. The scientists showed that more calcium resulted in greater bone mineral density and stronger bones and that the DEXA machine could accurately record those differences.

Results of this study showed that the hens fed a low-calcium diet produced fewer eggs. The eggshells they produced also were significantly thinner and weighed less than the birds fed an average to high amount of calcium.

Though the researchers aren’t specifically seeking answers to human osteoporosis, they may find some.

Evolutionary biology has shown that many of the same or similar genes are found in different plants and animals. So, studying one species often leads to information to help with research in another plant or animals. Chickens already are used for other biomedical studies, including embryo development and birth defects, because of some known gene similarities.

Last year, the National Human Genome Research Institute, part of the National Institutes of Health, placed chickens on the high priority list for sequencing of the bird’s genetic makeup. The institute’s program is directed at comparing genomes of plants, animals and humans to determine similarities and differences that make them susceptible or resistant to various diseases and developmental problems.

In the meantime, discovering genetic methods to lessen osteoporosis is of immediate concern to the egg industry.

Before the bone-weakening disease became so widespread in poultry, the approximately 45 million laying hens disposed of annually in the United States were sold to soup manufacturers. But osteoporosis caused so many bone splinters in meat that it couldn’t be used for human consumption. Now most of the soup meat comes from broiler, or meat-type, chickens, rather than egg-laying hens.

"If the skeletal integrity of laying hens can be improved to reduce splintered bones, then perhaps the soup market can be regained at 25 cents or more per chicken," Hester said.

Many farmers now must pay to have the birds hauled away or give them away free, she said. If hens are not processed for meat, then producers need an environmentally safe and economical way to dispose of the birds once their egg-producing days are over.

The estimated U.S. annual economic loss because the egg layers aren’t used for meat products is $18 million, Hester said.

Other researchers involved in the study include: Diane Moody, Purdue assistant professor of animal sciences; graduate students Melissa Schreiweis and Helenice Mazzuco; animals scientists Joseph Orban of Southern University, Shreveport, La.; and Monica Ledur of Embrapa Swine and Poultry Research Center in Concordia, Brazil.



The U.S. Department of Agriculture Scientific Cooperation Research Program, the National Research Initiative Competitive Grants Program and the State of Indiana Value-Added Grant Fund provided support for this study.

Writer: Susan A. Steeves, 765-496-7481, ssteeves@purdue.edu

Sources: Patricia "Scotti" Hester, 765-494-8091, phester@purdue.edu

Susan A. Steeves | Purdue University
Further information:
http://www.ansc.purdue.edu/faculty/heste.htm
http://www.ansc.purdue.edu
http://www.usda.gov/services.html

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>