Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart Polymer For The Lawn

04.08.2003


Researchers of the Bochvara All-Russian Scientific Research Institute for Inorganic Materials, supported by the International Scientific and Technical Center have developed new tilth technology, which allows to get rid of radioactive or poisonous dust, to transform dust-forming slag-heaps into green lawn and even to grow forest in the desert.



The technology is based on the polyelectrolytes developed by chemists of the Lomonosov Moscow State University. The polyelectrolytes are polymers, the chains of which carry different charges. “When the polymers contact, they combine strongly with each other, explains Academician Kabanov, one of the authors of the development. This is their first advantage, and the second one is that they are capable of joining to any specks of dust, as the specks’ surface always carries electric charge. If the soil is tilled by polyelectrolytes, they will form a solid crust”. The crust will contain nubbins of soil, grains of sand, and various small and fine specks of dust get combined together by adhesive polymeric filaments resembling the spider’’s web. Such crust lets the air through excellently and it is even capable of accumulating moisture, that is why the seeds contained in the crust get into microhotbed conditions and germinate well.

The major challenge in developing the technology is that polyelectrolytes, when located in the same solution, react immediately and precipitate. That is why the soil is to be initially tilled by the solution of the first polymer and then by the solution of the second one. “This technology cannot be applied when large areas are tilled from helicopters, says Sergei Mikheikin, leader of the effort. The task was set up as follows: create one-pass tillage technology. We have succeeded in finding the way out – some salt was added to the solution”.


As a matter of fact, the ions, into which the salt molecule dissociates, combine with electric charges of polyelectrolyte chains and block them. When diluted, for instance, after the first rain, ions of salt get washed out, and the crust sets solid. Now the technology looks extremely simple: first, nitrate is dissolved in a barrel of water (nitrate will also serve as fertilizer for the plants vegetating from the crust), and then the powder of two polymers is dissolved in the barrel. After the lot of soil is watered by this solution, no dust will flow up out of it – this is important for dust-forming slag-heaps at the mining and chemical plants, and for areas of radio-active contamination. Similarly, a sand-dune will be stopped in the desert. The technology has been tried at the Chernobyl accident location, in the salt desert in place of the Aral Sea, where the researchers transplanted saxauls at the experimental allotments, and also in the areas of terrestrial nuclear weapons tests in the USA.

Contact: Victor Kabanov, kabanov@genebee.msu.ru

Sergey Komarov | Informnauka Agency

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>