Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart Polymer For The Lawn

04.08.2003


Researchers of the Bochvara All-Russian Scientific Research Institute for Inorganic Materials, supported by the International Scientific and Technical Center have developed new tilth technology, which allows to get rid of radioactive or poisonous dust, to transform dust-forming slag-heaps into green lawn and even to grow forest in the desert.



The technology is based on the polyelectrolytes developed by chemists of the Lomonosov Moscow State University. The polyelectrolytes are polymers, the chains of which carry different charges. “When the polymers contact, they combine strongly with each other, explains Academician Kabanov, one of the authors of the development. This is their first advantage, and the second one is that they are capable of joining to any specks of dust, as the specks’ surface always carries electric charge. If the soil is tilled by polyelectrolytes, they will form a solid crust”. The crust will contain nubbins of soil, grains of sand, and various small and fine specks of dust get combined together by adhesive polymeric filaments resembling the spider’’s web. Such crust lets the air through excellently and it is even capable of accumulating moisture, that is why the seeds contained in the crust get into microhotbed conditions and germinate well.

The major challenge in developing the technology is that polyelectrolytes, when located in the same solution, react immediately and precipitate. That is why the soil is to be initially tilled by the solution of the first polymer and then by the solution of the second one. “This technology cannot be applied when large areas are tilled from helicopters, says Sergei Mikheikin, leader of the effort. The task was set up as follows: create one-pass tillage technology. We have succeeded in finding the way out – some salt was added to the solution”.


As a matter of fact, the ions, into which the salt molecule dissociates, combine with electric charges of polyelectrolyte chains and block them. When diluted, for instance, after the first rain, ions of salt get washed out, and the crust sets solid. Now the technology looks extremely simple: first, nitrate is dissolved in a barrel of water (nitrate will also serve as fertilizer for the plants vegetating from the crust), and then the powder of two polymers is dissolved in the barrel. After the lot of soil is watered by this solution, no dust will flow up out of it – this is important for dust-forming slag-heaps at the mining and chemical plants, and for areas of radio-active contamination. Similarly, a sand-dune will be stopped in the desert. The technology has been tried at the Chernobyl accident location, in the salt desert in place of the Aral Sea, where the researchers transplanted saxauls at the experimental allotments, and also in the areas of terrestrial nuclear weapons tests in the USA.

Contact: Victor Kabanov, kabanov@genebee.msu.ru

Sergey Komarov | Informnauka Agency

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>