Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart Polymer For The Lawn

04.08.2003


Researchers of the Bochvara All-Russian Scientific Research Institute for Inorganic Materials, supported by the International Scientific and Technical Center have developed new tilth technology, which allows to get rid of radioactive or poisonous dust, to transform dust-forming slag-heaps into green lawn and even to grow forest in the desert.



The technology is based on the polyelectrolytes developed by chemists of the Lomonosov Moscow State University. The polyelectrolytes are polymers, the chains of which carry different charges. “When the polymers contact, they combine strongly with each other, explains Academician Kabanov, one of the authors of the development. This is their first advantage, and the second one is that they are capable of joining to any specks of dust, as the specks’ surface always carries electric charge. If the soil is tilled by polyelectrolytes, they will form a solid crust”. The crust will contain nubbins of soil, grains of sand, and various small and fine specks of dust get combined together by adhesive polymeric filaments resembling the spider’’s web. Such crust lets the air through excellently and it is even capable of accumulating moisture, that is why the seeds contained in the crust get into microhotbed conditions and germinate well.

The major challenge in developing the technology is that polyelectrolytes, when located in the same solution, react immediately and precipitate. That is why the soil is to be initially tilled by the solution of the first polymer and then by the solution of the second one. “This technology cannot be applied when large areas are tilled from helicopters, says Sergei Mikheikin, leader of the effort. The task was set up as follows: create one-pass tillage technology. We have succeeded in finding the way out – some salt was added to the solution”.


As a matter of fact, the ions, into which the salt molecule dissociates, combine with electric charges of polyelectrolyte chains and block them. When diluted, for instance, after the first rain, ions of salt get washed out, and the crust sets solid. Now the technology looks extremely simple: first, nitrate is dissolved in a barrel of water (nitrate will also serve as fertilizer for the plants vegetating from the crust), and then the powder of two polymers is dissolved in the barrel. After the lot of soil is watered by this solution, no dust will flow up out of it – this is important for dust-forming slag-heaps at the mining and chemical plants, and for areas of radio-active contamination. Similarly, a sand-dune will be stopped in the desert. The technology has been tried at the Chernobyl accident location, in the salt desert in place of the Aral Sea, where the researchers transplanted saxauls at the experimental allotments, and also in the areas of terrestrial nuclear weapons tests in the USA.

Contact: Victor Kabanov, kabanov@genebee.msu.ru

Sergey Komarov | Informnauka Agency

More articles from Agricultural and Forestry Science:

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

nachricht Ecological intensification of agriculture
09.09.2016 | Julius-Maximilians-Universität Würzburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>