Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increasing carbon dioxide relieves drought stress in corn

28.07.2003


Increasing carbon dioxide in the atmosphere will benefit photosynthesis in U.S. corn crops in the future by relieving drought stress, say researchers at the University of Illinois at Urbana-Champaign.

According to preliminary findings of a new study -- being released this week in Hawaii during Plant Biology 2003, the annual meeting of the American Society of Plant Biologists -- photosynthesis of maize on average increased by 10 percent under projected carbon dioxide conditions in the year 2050.

"Carbon dioxide in isolation is good news for the farmers, but unfortunately such conditions won’t be in isolation from other factors, so it isn’t known how significant these findings may be," said Stephen P. Long, a professor of plant biology and crop sciences.



Long is a lead researcher of SoyFACE (Free Air Concentration Enrichment), a long-term project and the only open-air experiment in the world looking at the effect of future levels of ozone and carbon dioxide gases on agricultural crops.

The corn photosynthesis findings are being exhibited by Andrew Leakey, a Fulbright scholar from Scotland who is conducting research in the SoyFACE fields with Long and with Carl Bernacchi and Donald Ort, both professors of plant biology at Illinois and scientists with the USDA/Agricultural Research Service.

Corn is among the 1 percent of plants that use the carbon-dioxide efficient photosynthesis system known as C4. Scientists had theorized that C4 plants would not respond to more carbon dioxide in the air, because the gas is internally concentrated by the leaf – essentially a fuel-injected photosynthesis, Leakey said.

However, Leakey found that in a carbon dioxide concentration of 550 parts per million, carbon fixation in the leaves indeed rose in association with greater intercellular carbon dioxide and enhanced water use efficiency.

The 2002 growing season, when the research was conducted, was considered a typical one in terms of weather. However, at the end of a dry spell in June, Leakey found, carbon fixation increased under elevated carbon dioxide as much as 41 percent.

Since carbon dioxide serves to close the stomata, which are tiny pores in the epidermal layer of leaves, the jump in photosynthesis likely resulted from the plant maintaining higher water content in the leaves during the dry period, Long said.

The improvement in corn growth could be offset by the effects of rising ozone levels and other global warming factors, the researchers are quick to point out. While elevated ozone is part of the SoyFACE technology, corn has not yet been exposed to it. In soybeans, initial exposure to carbon dioxide led to increased yields that were later dramatically reversed by the effects of ozone.

The SoyFACE research area on the south end of campus features 70-foot octagon-shaped plots in which ABS plastic pipes deliver at crop level a precisely regulated flow of either carbon dioxide and/or ozone from 50-ton solar-powered tanks. Control rings surround equal amounts of control crops, which grow in normal conditions, without gases, for comparison purposes.

Construction began in 2000; research began the next spring. SoyFACE comprises more than 30 research groups with participants from 18 countries. Funding is provided by the Illinois Council for Food and Agricultural Research, the U.S. Department of Agriculture, the International Arid Lands Consortium of Astra-Zeneca, United Kingdom, the U.S. Department of Energy’s Argonne National Laboratory, Archer Daniels Midland Co. and Pioneer Hi-Bred International Inc.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>