Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Response of vine to different irrigation policies

17.07.2003


Gonzaga Santesteban, lecturer at the Public University of Navarre, concluded his thesis stating that a generalised recommendation on vine irrigation cannot be offered as the factors involved are diverse: the terrain where the vine is planted, the climate on the zone and the quantity of grape involved.



Problems with irrigation policy

Gonzaga Santesteban has investigated “The effect of irrigation on the quality of the grape and the wine in the Tempranillo variety”.


It has to be remembered that vine irrigation presents difficulties given that if the grape seed is too large the wine is not of good quality. This is why, as a general rule, it is accepted that although excessive irrigation impedes enologically high-quality harvests, it is difficult to predict the results of any one specific policy.

The research led by Gonzaga Santesteban is, basically, aimed at finding a method which will enable the wine-grower, who is the person who makes the decisions on irrigation, to be correctly advised .

Trials on vineyards in Corella

A series of trials were carried out on a 3.2 hectare estate in Corella in Navarra.

The estate was divided into four sectors each of which, over a period of three years, was subjected to a dosage of three irrigation plans a year. This enabled the analysis of a large number of situations differentiated by the initial conditions of the plants (vigour, potential crop and fertility of the young shoots) and by the level of stress they supported.

After the analysis of the results, the researchers came to the conclusion that no general recommendation on irrigation could be given. It was shown that, if the plant does not have water during the months of August and September, which is when the grape matures, photosynthesis is halted and the grape does not mature sufficiently. On the other hand, it is also true that, if the plant has too much water over this period, the maturing fruit grows too much and the quality is not good, either. In short, an irrigation plan has to be tailored to the type of soil and the quantity of grape which the vine carries.

In order to determine a plan for irrigation, the researchers propose the following method: assess the water needs of the plant. This is done by using a standard measure: the foliar water potential measured before daybreak, which is when the plant has most water.

The results of the research team has enabled mathematical models to be established which can predict precisely the size of the growing grapes, their sugar concentration and the end yield of the vine plants. These models are of great use when taking decisions in the field regarding the pruning potential crop and

Iñaki Casado Redin | Basque research
Further information:
http://www.unavarra.es

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>