Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Response of vine to different irrigation policies


Gonzaga Santesteban, lecturer at the Public University of Navarre, concluded his thesis stating that a generalised recommendation on vine irrigation cannot be offered as the factors involved are diverse: the terrain where the vine is planted, the climate on the zone and the quantity of grape involved.

Problems with irrigation policy

Gonzaga Santesteban has investigated “The effect of irrigation on the quality of the grape and the wine in the Tempranillo variety”.

It has to be remembered that vine irrigation presents difficulties given that if the grape seed is too large the wine is not of good quality. This is why, as a general rule, it is accepted that although excessive irrigation impedes enologically high-quality harvests, it is difficult to predict the results of any one specific policy.

The research led by Gonzaga Santesteban is, basically, aimed at finding a method which will enable the wine-grower, who is the person who makes the decisions on irrigation, to be correctly advised .

Trials on vineyards in Corella

A series of trials were carried out on a 3.2 hectare estate in Corella in Navarra.

The estate was divided into four sectors each of which, over a period of three years, was subjected to a dosage of three irrigation plans a year. This enabled the analysis of a large number of situations differentiated by the initial conditions of the plants (vigour, potential crop and fertility of the young shoots) and by the level of stress they supported.

After the analysis of the results, the researchers came to the conclusion that no general recommendation on irrigation could be given. It was shown that, if the plant does not have water during the months of August and September, which is when the grape matures, photosynthesis is halted and the grape does not mature sufficiently. On the other hand, it is also true that, if the plant has too much water over this period, the maturing fruit grows too much and the quality is not good, either. In short, an irrigation plan has to be tailored to the type of soil and the quantity of grape which the vine carries.

In order to determine a plan for irrigation, the researchers propose the following method: assess the water needs of the plant. This is done by using a standard measure: the foliar water potential measured before daybreak, which is when the plant has most water.

The results of the research team has enabled mathematical models to be established which can predict precisely the size of the growing grapes, their sugar concentration and the end yield of the vine plants. These models are of great use when taking decisions in the field regarding the pruning potential crop and

Iñaki Casado Redin | Basque research
Further information:

More articles from Agricultural and Forestry Science:

nachricht Algorithm could streamline harvesting of hand-picked crops
13.03.2018 | University of Illinois College of Engineering

nachricht A global conflict: agricultural production vs. biodiversity
06.03.2018 | Georg-August-Universität Göttingen

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>