Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find gene that protects against potato blight

15.07.2003


Scouring the genome of a wild Mexican potato, scientists have discovered a gene that protects potatoes against late blight, the devastating disease that caused the Irish potato famine.


Potato plants exposed to the pathogen that causes late blight, the disease responsible for the Irish potato famine, soon wither and die (left). The plant on the right has been engineered to resist the devastating disease through incorporation of a gene found in a wild Mexican potato, as part of research by John Helgeson, professor of plant pathology and Jiming Jiang, professor of horticulture and others.
Photo by: courtesy department of plant pathology
Date: July 2003



The discovery of the gene and its cloning by scientists at the University of Wisconsin-Madison was reported today (July 14) in online editions of the Proceedings of the National Academy of Sciences (PNAS).

The identification of the gene, found in a species of wild potato known as ´Solanum bulbocastanum, holds significant potential. All of the varieties now cultivated commercially on more than 1.5 million acres in the United States are highly susceptible to potato late blight, a family of fungal pathogens that wreaks havoc in the field, turning tubers to mush and invariably killing any plant it infects.


"We think this could be very useful," says John Helgeson, a UW-Madison professor of plant pathology, a research scientist with the U.S. Department of Agriculture and a senior author of the PNAS paper. "No potato grown in the United States on any scale at all has resistance to this disease."

With the blight-resistant gene in hand, the Wisconsin team, which also includes Jiming Jiang, a UW-Madison professor of horticulture, was able to engineer plants that survived exposure to the many races of Phytophthora infestans. The insertion of a single gene, according to Jiang and Helgeson, effectively protects plants from the range of late blight pathogens.

"So far, the plants have been resistant to everything we have thrown at them," says Helgeson.

The world’s most serious potato disease, late blight is best known as the cause of the Irish potato famine. Seeming to appear from nowhere in 1845, the fungus wiped out the staple crop of the densely populated island nation, causing mass starvation over five years, killing more than a million people and sparking a wave of immigration that had worldwide social consequences.

More than 150 years later, Ireland’s population has yet to return to pre-famine levels.

Prior to the 1990s, chemical fungicides were available in the United States and effectively held the disease at bay. But new strains of the pathogen have emerged, testing the limits of the technology and requiring American farmers to treat potato fields as many as a dozen times a season at a cost of up to $250 per acre. In warmer climates such as Mexico, fields may be treated as many as 25 times a year with the costly and toxic chemicals.

"We used to be able to get by, but the new (late-blight) strain just levels things in no time at all," says Helgeson.

The gene that protects potatoes from the fungus comes from a plant that scientists believe co-evolved in Mexico alongside the late-blight pathogen. It was discovered, ironically, as a result of the emergence of a new strain of P. infestans that swept through the United States in 1994. At UW-Madison’s Hancock Agricultural Research Station, the only plants to survive were the wild Mexican species and its progeny in Helgeson’s test plots.

Subsequent to the 1994 outbreak, which required the development of new fungicides for agriculture, Helgeson and his colleagues began the hunt for the genes that conferred resistance on the wild Mexican cousin of the domesticated tubers familiar to consumers.

In 2000, Helgeson’s lab reported narrowing the search to one of the 12 chromosomes of the wild plant. Now, with the gene identified, cloned and successfully tested in engineered varieties in the laboratory, at hand is a new technology that could save farmers hundreds of millions of dollars and benefit the environment by eliminating the application of thousands of tons of toxic chemicals.

But despite the huge economic and environmental gains that could be realized, it is unclear if the technology will be widely utilized. Because of European fears of genetically modified crops, and the control exercised over growers by a few large buyers, there is currently no engineered potato in commercial production anywhere.

The use of conventional breeding techniques to move the newfound blight-resistance gene into the few dominant commercial varieties popular in the United States is all but impossible, according to Jiang.

"We can do it by conventional breeding, but we can’t move it into the standard cultivated varieties without losing them," he says. "It is almost impossible to create another Burbank variety, for example, through conventional breeding. Your odds of getting the one gene in would be like winning the lottery."

Still, the Wisconsin group, plans to develop engineered varieties for the garden. The hope, they say, is to develop the technology that will gradually win consumer acceptance and, perhaps someday, go where no GMO has gone before.

The lead authors of the PNAS paper published today are Junqi Song of the UW-Madison department of horticulture and James M. Bradeen of the UW-Madison department of plant pathology and the U.S. Department of Agriculture’s Agricultural Research Service. Other co-authors include S. Kristine Naess and Geraldine T. Haberlach of the UW-Madison department of plant pathology and the U.S. Department of Agriculture’s Agricultural Research Service, John A. Raasch and Sandra Austin-Phillips of the UW-Madison Biotechnology Center, Susan M. Wielgus of the UW-Madison department of horticulture, Jia Liu and C. Robin Buell of the Institute for Genomic Research in Rockville, Md., and Hanhui Kuang of the department of vegetable crops at the University of California at Davis.


Terry Devitt 608-262-8282, trdevitt@facstaff.wisc.edu

CONTACT: Jiming Jiang 608-262-1878, jjiang1@wisc.edu; John Helgeson 608-262-0649, jph@plantpath.wisc.edu

Jiming Jiang | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>