Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Universities to share technologies to fight hunger in developing countries; improve domestic crops

11.07.2003


A group of leading U.S. public sector agricultural research institutions has agreed to allow access to each other’s current and future patented agricultural technologies and is exploring ways to ensure that new licensing agreements allow for technologies to be used to fight global hunger and to boost the domestic agricultural sector.

The agreement will accelerate research and development to improve staple crop varieties like rice, cassava, sorghum and potatoes essential to resource-poor farmers in developing countries who depend on small farm plots and face severe and very fundamental problems, such as poor agricultural soils, drought, plant diseases and pests. Low production is a perennial threat to resource–poor farming families and an important factor contributing to the chronic undernourishment of about 800 million people worldwide.

The agreement will also benefit the U.S. agricultural sector by speeding up research, development and commercialization of specialty crops like tomatoes, lettuce and grapes for characteristics including improved nutritional value, better disease-resistance and reduced environmental impact. These and other specialty crops, which are grown in specific regions rather than across broad areas involving tens of millions of acres like wheat and corn, are important to states’ economies.



A new initiative, the Public-Sector Intellectual Property Resource for Agriculture, or PIPRA, has been established to collaborate in managing participating institutions’ intellectual property. PIPRA will explore and encourage best practices in IP licensing that will result in greater access to agricultural inventions for subsistence and specialty crop applications. It will also establish a mechanism for information sharing so that researchers at those institutions can more easily determine what public sector-owned technologies exist, who holds the rights, and if the technology has been licensed, to whom and under what terms.

The initial participating research institutions hope to attract others so that collectively they will eventually have access to the most important current and future agricultural biotechnology patents owned by public sector institutions. A critical fact is that the public sector invented a diverse set of technologies that amounts to approximately 25 percent of the total number of agricultural biotechnology patents. This is believed to be a good indicator that the public sector can speed up research and development by making it easier for researchers to obtain "freedom to operate" – the ability to clear all intellectual property barriers, as well as regulatory and cultural constraints, and bring a new product to market – to develop new crop varieties important to developing countries and state agricultural sectors alike.

A paper outlining PIPRA appears in the July 11, 2003 issue of Science published by AAAS, the science society, and is signed by the presidents or chancellors of Cornell University, Michigan State University, North Carolina State University, Ohio State University, University of California System, University of California-Riverside, University of California-Davis, Rutgers-The State University of New Jersey, University of Florida, University of Wisconsin-Madison, Boyce Thompson Institute for Plant Research; the Rockefeller and McKnight Foundations; and the Donald Danforth Plant Science Center.

Designated representatives of each participating institution, organized in a steering committee, are developing options for PIPRA’s organization and structure. As they are working towards the articulation of a business plan, several elements of PIPRA are already under development. A database of patent and licensing information is being developed, a definition of "humanitarian use" for inclusion in licensing agreements is close to completion, and plans for pilot projects are taking shape.

The development of new crop varieties using agricultural biotechnology depends on access to multiple technologies, which are often patented or otherwise protected by intellectual property rights. Ownership of these rights is currently fragmented across many institutions in the public and private sector, which makes it difficult to identify who holds what rights to what technologies, in which countries, and to establish whether or not a new crop variety is at risk of infringing those rights. The current situation creates barriers to commercializing new staple and specialty crop varieties. PIPRA participants believe that if public sector institutions would collaborate in retaining certain rights to their agricultural technologies when licensing them to companies, and cataloguing the existence and use of agricultural intellectual property rights, that collaboration would lead to an acceleration in the development and commercialization of improved staple and specialty crops, thereby more adequately fulfilling the institutions’ public missions of providing knowledge for the benefit of the public good – as established and often required by law.

George Soule | EurekAlert!
Further information:
http://www.rockfound.org/

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>