Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Universities to share technologies to fight hunger in developing countries; improve domestic crops

11.07.2003


A group of leading U.S. public sector agricultural research institutions has agreed to allow access to each other’s current and future patented agricultural technologies and is exploring ways to ensure that new licensing agreements allow for technologies to be used to fight global hunger and to boost the domestic agricultural sector.

The agreement will accelerate research and development to improve staple crop varieties like rice, cassava, sorghum and potatoes essential to resource-poor farmers in developing countries who depend on small farm plots and face severe and very fundamental problems, such as poor agricultural soils, drought, plant diseases and pests. Low production is a perennial threat to resource–poor farming families and an important factor contributing to the chronic undernourishment of about 800 million people worldwide.

The agreement will also benefit the U.S. agricultural sector by speeding up research, development and commercialization of specialty crops like tomatoes, lettuce and grapes for characteristics including improved nutritional value, better disease-resistance and reduced environmental impact. These and other specialty crops, which are grown in specific regions rather than across broad areas involving tens of millions of acres like wheat and corn, are important to states’ economies.



A new initiative, the Public-Sector Intellectual Property Resource for Agriculture, or PIPRA, has been established to collaborate in managing participating institutions’ intellectual property. PIPRA will explore and encourage best practices in IP licensing that will result in greater access to agricultural inventions for subsistence and specialty crop applications. It will also establish a mechanism for information sharing so that researchers at those institutions can more easily determine what public sector-owned technologies exist, who holds the rights, and if the technology has been licensed, to whom and under what terms.

The initial participating research institutions hope to attract others so that collectively they will eventually have access to the most important current and future agricultural biotechnology patents owned by public sector institutions. A critical fact is that the public sector invented a diverse set of technologies that amounts to approximately 25 percent of the total number of agricultural biotechnology patents. This is believed to be a good indicator that the public sector can speed up research and development by making it easier for researchers to obtain "freedom to operate" – the ability to clear all intellectual property barriers, as well as regulatory and cultural constraints, and bring a new product to market – to develop new crop varieties important to developing countries and state agricultural sectors alike.

A paper outlining PIPRA appears in the July 11, 2003 issue of Science published by AAAS, the science society, and is signed by the presidents or chancellors of Cornell University, Michigan State University, North Carolina State University, Ohio State University, University of California System, University of California-Riverside, University of California-Davis, Rutgers-The State University of New Jersey, University of Florida, University of Wisconsin-Madison, Boyce Thompson Institute for Plant Research; the Rockefeller and McKnight Foundations; and the Donald Danforth Plant Science Center.

Designated representatives of each participating institution, organized in a steering committee, are developing options for PIPRA’s organization and structure. As they are working towards the articulation of a business plan, several elements of PIPRA are already under development. A database of patent and licensing information is being developed, a definition of "humanitarian use" for inclusion in licensing agreements is close to completion, and plans for pilot projects are taking shape.

The development of new crop varieties using agricultural biotechnology depends on access to multiple technologies, which are often patented or otherwise protected by intellectual property rights. Ownership of these rights is currently fragmented across many institutions in the public and private sector, which makes it difficult to identify who holds what rights to what technologies, in which countries, and to establish whether or not a new crop variety is at risk of infringing those rights. The current situation creates barriers to commercializing new staple and specialty crop varieties. PIPRA participants believe that if public sector institutions would collaborate in retaining certain rights to their agricultural technologies when licensing them to companies, and cataloguing the existence and use of agricultural intellectual property rights, that collaboration would lead to an acceleration in the development and commercialization of improved staple and specialty crops, thereby more adequately fulfilling the institutions’ public missions of providing knowledge for the benefit of the public good – as established and often required by law.

George Soule | EurekAlert!
Further information:
http://www.rockfound.org/

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>