Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Popularizing precision agriculture

05.06.2003


Technology is bringing precision agriculture one-step closer to widespread use



USDA-Agricultural Research Service scientists at the George E. Brown, Jr. Salinity Laboratory, Riverside, California, have developed general guidelines for soil mapping using mobile equipment. This advanced technology is valuable for looking at changes in soil quality over time; including the presence of pollutants such as salts, pesticides, and fertilizers; and for use in precision agriculture to determine areas that are to be managed to maximize yield, minimize environmental impacts, and optimize the use of resources.
Soil is a very diverse media, which can vary from one point to the next in its chemical and physical makeup. Many of these soil properties influence crop yield and can cause yield variations within fields. These soil properties also influence how pollutants move through soil and get into the groundwater or runoff into lakes and streams.

One useful means of mapping these changes is using mobile equipment to measure several soil properties simultaneously. In order to determine where to take the optimum number of soil samples that will characterize the patterns in soil properties within a field, information is first obtained through the use of a global positioning system (GPS). Using statistical software developed by Scott Lesch of the Salinity Laboratory, maps of soil properties are then created by a geographic information system (GIS). These maps are used to guide management decisions for precision agriculture.



All of the steps and techniques are outlined in an article appearing in the May-June issue of Agronomy Journal. The guidelines were originally presented in the Soil Electrical Conductivity in Precision Agriculture Symposium at the 2000 Annual Meetings of the American Society of Agronomy-Crop Science Society of America-Soil Science Society of America.

"These guidelines provide scientists with a standardized means of conducting a soil survey for characterizing the soil chemical and physical properties that cause within-field variations in crop yield and that cause variations in the patterns of water and chemical movement. This is a tool that makes a significant step toward bringing precision agriculture from a scientific concept to a reality," said Dennis Corwin, the project’s lead scientist.

Rapidly developing information technology is providing scientists with the tools to deal with the complexities of soil-water-plant systems. In the past, these complexities have been so overwhelming that they hampered the progress of precision agriculture. The authors of the survey guidelines are confident that current and future research efforts are moving precision agriculture from a predominantly research concept to a day within the next one to two decades where precision agriculture will be the norm for agricultural operations.



Agronomy Journal, http://agron.scijournals.org is a peer-reviewed, international journal of agriculture and natural resource sciences published six times a year by the American Society of Agronomy (ASA). Agronomy Journal contains research papers on all aspects of crop and soil science including agroclimatology and agronomic modeling, military land use and management, extension education, environmental quality, international agronomy, agricultural research station management, and integrated agricultural systems.

The American Society of Agronomy (ASA) www.agronomy.org, the Crop Science Society of America (CSSA) www.crops.org and the Soil Science Society of America (SSSA) www.soils.org are educational organizations helping their 10,000+ members advance the disciplines and practices of agronomy, crop and soil sciences by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.asa-cssa-sssa.org/
http://agron.scijournals.org

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>