Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers discover possible diagnosis, treatment, vaccine for mad cow, prion diseases


Research led by scientists at the U of T and Caprion Pharmaceuticals have uncovered the basis for a diagnostic, immunotherapy and vaccine, providing a way to detect and treat the brain-wasting damage of infectious prions like those found in mad cow disease and its human version, Creutzfeldt-Jakob Disease.

Microscopic image of a tissue sample from a human brain that shows a clump of infectious prions (dark pink area).
Credit: Dr. Neil Cashman of the University of Toronto.

representation showing the tyrosine-tyrosine-arginine amino acid sequence (the yellow, green and purple clumps) on the infectious prion.
Credit: Dr. Neil Cashman of the University of Toronto.

Dr. Neil Cashman, a principal investigator at U of T’s Centre for Research in Neurodegenerative Diseases and professor in the Department of Medicine (neurology) and a Caprion founder, says a vaccine approach - which would likely be of most use in animals and livestock - could prevent animals from becoming infected. For humans with diseases like classical or variant Creutzfeldt-Jakob, an immunotherapeutic would provide patients with antibodies that bind infectious prions, enabling the immune system to recognize and attack them. For both humans and animals, the diagnostic screening potential of this discovery could significantly improve the safety of the human blood and food systems.

Cashman, who also holds the Jeno Diener Chair in Neurodegenerative Diseases at U of T, says his team tried a new approach in studying infectious prions, which are particles thought to be composed of normal prion proteins that have been compromised and folded into rogue shapes. "The usual way of raising antibodies in the immune system is to grind the infectious agent up and inject it into a mouse to see if it prompts antibody production," he says. "Scientists have tried this method with prions over the past 15 years, all without success. My group decided to examine it from the sub-molecular level to determine if antibodies would recognize and react to the amino acids exposed at the surface of a prion. It was a novel idea, and when we found that our hypothesis actually worked, we were surprised and pleased." The researchers’ findings are reported online in the June 1 version of Nature Medicine.

All mammals have prion proteins, the highest levels of which are present in the brain, explains Cashman, a senior scientist at Sunnybrook and Women’s Research Institute and a neurologist in the Department of Medicine at Sunnybrook and Women’s College Health Sciences Centre. Mammals can contract prion diseases by ingesting abnormal or infectious prions. From the digestive system, these prions make their way to the brain. When an abnormal prion comes in contact with a normal prion protein, it causes the protein to misfold, thus creating a copy of the infectious prion. Cashman says the process is more akin to co-opting than replication. However, since the abnormal prion has similar characteristics to the original host protein, the immune system does not recognize it as a foreign invader and does not attack it.

In their study, Cashman and his colleagues examined the role of chemical groups in amino acids, which are called side chains. "We wanted to see whether there were side chains accessible on abnormal prions that were not accessible on the normal protein. We hypothesized that in a normal prion protein, there will be side chains buried in the interior of the molecule. When the protein converts to the abnormal form, we thought that some of these side chains would then be exposed on the molecular surface. We discovered that the newly exposed side chains of abnormal prions include a sequence composed of three amino acids - tyrosine, tyrosine and arginine (Tyr-Tyr-Arg). By raising antibodies against the Tyr-Tyr-Arg amino acid sequence, the immune system became able to recognize the abnormal prion as an invader and attack it."

"It was a ’Eureka!’ moment," he recalls. "Significantly, while the antibodies recognized the abnormal prions, they left the normal prion proteins intact."

Cashman and his team further found that the tyrosine-tyrosine-arginine amino acid sequence appears to be common among species. "Different species have different sequences of prion proteins," he says. "But this Tyr-Tyr-Arg motif appears to be the same in every species that we’ve been able to look at - humans, cattle, mice, hamsters, sheep and elk. When we applied our antibodies to the infected tissues and cells of our samples, they only bound to the abnormal prion protein in all these species."

The researchers are currently testing a possible vaccine to prion disease in mice. They plan to immunize mice with the Tyr-Tyr-Arg sequence and then infect them with prions.

"In order to treat prion diseases in the most effective way possible, it is necessary to understand the manner in which prion proteins fold into a pathological form," says Dr. Bhagirath Singh, scientific director of the Institute of Infection and Immunity of the Canadian Institutes of Health Research. "Dr. Cashman’s discovery is a vital step in understanding the causes of prion diseases and will play key a role in developing vaccines and a new generation of drugs to combat this condition."

The immediate commercial applications of the discoveries are diagnostics, as global health authorities urgently seek to ensure that beef and transfused blood are safe from Mad Cow-related infections. "Neil’s discovery represents the single most promising hope for diagnosing and treating this fatal disease," notes Lloyd M. Segal, president and CEO of Caprion. Caprion has already announced collaborations with Johnson & Johnson and IDEXX Laboratories to apply these technologies for the development of diagnostics for prion-related diseases, he adds.

Caprion provided the major funding and support for this pioneering research and own all commercial applications of the discoveries. This research was also supported by the Canadian Institutes of Health Research and McDonald’s Corp.


Janet Wong
U of T Public Affairs

Neil Cashman
Centre for Research in Neurodegenerative Diseases

Kathie Darlington
Caprion Pharmaceuticals Inc.

Janet Wong | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Algorithm could streamline harvesting of hand-picked crops
13.03.2018 | University of Illinois College of Engineering

nachricht A global conflict: agricultural production vs. biodiversity
06.03.2018 | Georg-August-Universität Göttingen

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>