Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tough new cereals that can withstand poor soil conditions


390 million hectares (circa 80% of the total land area) in Europe is currently laid to waste by acid soil toxicity. Now EUREKA project CEREALSTRESSOL is developing new varieties of crops that can cope with adverse due to natural stresses such as drought and due to abiotic, non-living stresses such as acid soil toxicity.

Acid soil toxicity is caused by the leaching of aluminum, manganese and other toxins into the soil through acid rain, acid forming fertilizers as well as the decay of organic matter caused by the drive to gain higher and higher yield from the soil.
EUREKA project CEREALSTRESSTOL brought together researchers from Hungary, Poland, Greece and Turkey. Dr Lajos Bona, Senior Researcher at GKI (Cereal Research Non-Profit Company), Hungary explains how the partners met each other for the first time.

“EUREKA held a brokerage event in Poland in 1994, which provided a forum for various interested parties to discuss potential projects," says Bona. "We discovered that we were all working independently towards abiotic stress tolerant cereals, so it made perfect sense to work together.”

The project’’s work began with the selection of several potential varieties based on previous work the researchers had carried out. As a result of this, 12 new types of germ-plasm were tested first in the laboratory in Poland and then in two-year field trials in Hungary. The outcome was three new cereal varieties that yield up to 6 per cent more than similar crops: GK Mero, a new wheat, GK Wibro, a new rye, and GK Bogo, a new wheat/rye cross.

“In theory these new varieties could expect to have a market life of between 10 and 15 years. If that proves to be the case, there could be significant profit for all concerned, from seedsmen through to farmers, who will naturally welcome the increased yield from poor land,” says Bona.

According to Dr Andrzej Aniol of the Polish Plant Breeding and Acclimatization Institute “CEREALSTRESSTOL speeded up work in Poland and Hungary saving 3-5 years in the process”.

One of the keys to our success was the combination of expertise that working together enabled. It was like bringing together all the pieces of a jigsaw," says Bona. “Researchers at the Marmara Research Centre in Turkey are experts in molecular techniques such as DNA fingerprinting. Staff in the botany department at Aristotle University in Greece, on the other hand, were able to research the effects of metal stress on cereal enzymes and photosynthesis.”

Not everything was easy as the partners struggled with high Hungarian and Polish inflation rates that ate up budgets set fours year earlier. The Hungarian and Polish partners have put that behind them now and are continuing to work together, hoping to further develop, exchange, and test new genetic material for agricultural use.

“Working in EUREKA in the early part of our democracy and in a renewing business area was an outstanding situation," recalls Bona. "At that time, a relatively low amount of administrative work made EUREKA attractive to me.”

A European network for market-oriented R&D
- strengthening European competitiveness
- promoting innovation in market-oriented collaborative projects
- involving industry, research institutes and universities across Europe
- resulting in innovative products, processes and services.

Nicola Vatthauer | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>