Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tough new cereals that can withstand poor soil conditions

27.05.2003


390 million hectares (circa 80% of the total land area) in Europe is currently laid to waste by acid soil toxicity. Now EUREKA project CEREALSTRESSOL is developing new varieties of crops that can cope with adverse due to natural stresses such as drought and due to abiotic, non-living stresses such as acid soil toxicity.



Acid soil toxicity is caused by the leaching of aluminum, manganese and other toxins into the soil through acid rain, acid forming fertilizers as well as the decay of organic matter caused by the drive to gain higher and higher yield from the soil.
EUREKA project CEREALSTRESSTOL brought together researchers from Hungary, Poland, Greece and Turkey. Dr Lajos Bona, Senior Researcher at GKI (Cereal Research Non-Profit Company), Hungary explains how the partners met each other for the first time.

“EUREKA held a brokerage event in Poland in 1994, which provided a forum for various interested parties to discuss potential projects," says Bona. "We discovered that we were all working independently towards abiotic stress tolerant cereals, so it made perfect sense to work together.”



The project’’s work began with the selection of several potential varieties based on previous work the researchers had carried out. As a result of this, 12 new types of germ-plasm were tested first in the laboratory in Poland and then in two-year field trials in Hungary. The outcome was three new cereal varieties that yield up to 6 per cent more than similar crops: GK Mero, a new wheat, GK Wibro, a new rye, and GK Bogo, a new wheat/rye cross.

“In theory these new varieties could expect to have a market life of between 10 and 15 years. If that proves to be the case, there could be significant profit for all concerned, from seedsmen through to farmers, who will naturally welcome the increased yield from poor land,” says Bona.

According to Dr Andrzej Aniol of the Polish Plant Breeding and Acclimatization Institute “CEREALSTRESSTOL speeded up work in Poland and Hungary saving 3-5 years in the process”.

One of the keys to our success was the combination of expertise that working together enabled. It was like bringing together all the pieces of a jigsaw," says Bona. “Researchers at the Marmara Research Centre in Turkey are experts in molecular techniques such as DNA fingerprinting. Staff in the botany department at Aristotle University in Greece, on the other hand, were able to research the effects of metal stress on cereal enzymes and photosynthesis.”

Not everything was easy as the partners struggled with high Hungarian and Polish inflation rates that ate up budgets set fours year earlier. The Hungarian and Polish partners have put that behind them now and are continuing to work together, hoping to further develop, exchange, and test new genetic material for agricultural use.

“Working in EUREKA in the early part of our democracy and in a renewing business area was an outstanding situation," recalls Bona. "At that time, a relatively low amount of administrative work made EUREKA attractive to me.”


EUREKA is …
A European network for market-oriented R&D
- strengthening European competitiveness
- promoting innovation in market-oriented collaborative projects
- involving industry, research institutes and universities across Europe
- resulting in innovative products, processes and services.

Nicola Vatthauer | alfa
Further information:
http://www.eureka.be/cerealstresstol

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>