Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Looking at pesticide labels through multi-colored glasses


Pesticides are one of the most significant sources of poison to the human nervous system when misused. New research indicates that various cultures may misinterpret the directions provided by the manufacturers, thereby increasing the chances for mishandling.

The pesticide industry considers culture to be an increasing concern due to changing demographic trends - specifically, increases in migrant laborers and overall language diversity. As these trends continue, the opportunities for communication errors with pesticide use increase. Previous studies indicate that the main reason pesticides are misused is because customers are unable to follow the instructions. Cultural differences in how one interprets language, color, and symbols may exacerbate the problem.

To reduce the possibility of pesticide exposure, two researchers are investigating the use of cultural ergonomics to prevent pesticide exposure. Tonya Smith-Jackson, assistant professor of human factors engineering and ergonomics at Virginia Tech, and Michael Wogalter, professor of ergonomics at North Carolina State University, are working together under the auspices of a research contract from the National Institute for Occupational Safety and Health.

Using a pesticide takes more than just knowing what pest it will kill. It requires an understanding of how much to mix, how to apply it, and what protective gear to wear. “In an increasingly diverse and global society, communication ergonomics (the study of human-centered design of communications) is desperately needed to reduce the hazards associated with products and systems and the additional problems introduced by poor information design,” Smith-Jackson said.

Examples of pesticide misuse include: using too much pesticide (either too strong of a concentration or applying it too often), using an outdoor pesticide indoors, failing to follow the restricted time for reentering an area after a pesticide has been applied, or failing to wear the required safety gear, such as rubber gloves and eye goggles.

Farmers and pest managers need to be able to read and understand pesticide labels before even opening the container.

The research will improve the design of risk communications aimed at reducing or eliminating hazards related to pesticide exposures among ethnic minority farm workers, which in turn, is likely to apply to all farm workers regardless of ethnicity. Smith-Jackson and Wogalter are interviewing Latino and European-American farm workers on the use of pesticides and precautionary behavior when working on farms. The farmers being interviewed are working at peanut and fruit farms in Giles County, Va., Wake County, N.C., and Orange County, N.C.

The research project combines the disciplines of engineering, psychology, and cultural anthropology. The risk perception of migrant and seasonal farm workers who are language- and ethnic-minorities will be compared to non-minority farm workers. It is expected that even non-minority farm workers will have problems with pesticide labeling.

User-centered design guidelines for pesticide warning labels will be developed and an evaluation of usability and effectiveness will be conducted. User requirements and design specifications will be developed and disseminated to risk communication manufacturers, employers, health educators, safety and training groups, minority-serving agencies, and community-based advocacy and education groups.

Smith-Jackson’s research is in collaboration with the Southeastern Regional Agromedicine Center in Greenville, N.C. Graduate students assisting with this research include Yvette Quintela, an M.S. student in psychology at Virginia Tech, and Ray Lim and Eric Shaver, Ph.D. students in psychology at N.C. State. Smith-Jackson is the director of the Assessment and Cognitive Ergonomics (ACE) Lab at Virginia Tech ( For more information, contact Smith-Jackson at

PR CONTACT: Karen Gilert 540-231-4787

Tonya Smith-Jackson | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>