Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Looking at pesticide labels through multi-colored glasses

14.04.2003


Pesticides are one of the most significant sources of poison to the human nervous system when misused. New research indicates that various cultures may misinterpret the directions provided by the manufacturers, thereby increasing the chances for mishandling.



The pesticide industry considers culture to be an increasing concern due to changing demographic trends - specifically, increases in migrant laborers and overall language diversity. As these trends continue, the opportunities for communication errors with pesticide use increase. Previous studies indicate that the main reason pesticides are misused is because customers are unable to follow the instructions. Cultural differences in how one interprets language, color, and symbols may exacerbate the problem.

To reduce the possibility of pesticide exposure, two researchers are investigating the use of cultural ergonomics to prevent pesticide exposure. Tonya Smith-Jackson, assistant professor of human factors engineering and ergonomics at Virginia Tech, and Michael Wogalter, professor of ergonomics at North Carolina State University, are working together under the auspices of a research contract from the National Institute for Occupational Safety and Health.


Using a pesticide takes more than just knowing what pest it will kill. It requires an understanding of how much to mix, how to apply it, and what protective gear to wear. “In an increasingly diverse and global society, communication ergonomics (the study of human-centered design of communications) is desperately needed to reduce the hazards associated with products and systems and the additional problems introduced by poor information design,” Smith-Jackson said.

Examples of pesticide misuse include: using too much pesticide (either too strong of a concentration or applying it too often), using an outdoor pesticide indoors, failing to follow the restricted time for reentering an area after a pesticide has been applied, or failing to wear the required safety gear, such as rubber gloves and eye goggles.

Farmers and pest managers need to be able to read and understand pesticide labels before even opening the container.

The research will improve the design of risk communications aimed at reducing or eliminating hazards related to pesticide exposures among ethnic minority farm workers, which in turn, is likely to apply to all farm workers regardless of ethnicity. Smith-Jackson and Wogalter are interviewing Latino and European-American farm workers on the use of pesticides and precautionary behavior when working on farms. The farmers being interviewed are working at peanut and fruit farms in Giles County, Va., Wake County, N.C., and Orange County, N.C.

The research project combines the disciplines of engineering, psychology, and cultural anthropology. The risk perception of migrant and seasonal farm workers who are language- and ethnic-minorities will be compared to non-minority farm workers. It is expected that even non-minority farm workers will have problems with pesticide labeling.

User-centered design guidelines for pesticide warning labels will be developed and an evaluation of usability and effectiveness will be conducted. User requirements and design specifications will be developed and disseminated to risk communication manufacturers, employers, health educators, safety and training groups, minority-serving agencies, and community-based advocacy and education groups.


Smith-Jackson’s research is in collaboration with the Southeastern Regional Agromedicine Center in Greenville, N.C. Graduate students assisting with this research include Yvette Quintela, an M.S. student in psychology at Virginia Tech, and Ray Lim and Eric Shaver, Ph.D. students in psychology at N.C. State. Smith-Jackson is the director of the Assessment and Cognitive Ergonomics (ACE) Lab at Virginia Tech (http://ace.ise.vt.edu). For more information, contact Smith-Jackson at smithjack@vt.edu.

PR CONTACT: Karen Gilert 540-231-4787 karen.gilbert@vt.edu

Tonya Smith-Jackson | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>