Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Looking at pesticide labels through multi-colored glasses

14.04.2003


Pesticides are one of the most significant sources of poison to the human nervous system when misused. New research indicates that various cultures may misinterpret the directions provided by the manufacturers, thereby increasing the chances for mishandling.



The pesticide industry considers culture to be an increasing concern due to changing demographic trends - specifically, increases in migrant laborers and overall language diversity. As these trends continue, the opportunities for communication errors with pesticide use increase. Previous studies indicate that the main reason pesticides are misused is because customers are unable to follow the instructions. Cultural differences in how one interprets language, color, and symbols may exacerbate the problem.

To reduce the possibility of pesticide exposure, two researchers are investigating the use of cultural ergonomics to prevent pesticide exposure. Tonya Smith-Jackson, assistant professor of human factors engineering and ergonomics at Virginia Tech, and Michael Wogalter, professor of ergonomics at North Carolina State University, are working together under the auspices of a research contract from the National Institute for Occupational Safety and Health.


Using a pesticide takes more than just knowing what pest it will kill. It requires an understanding of how much to mix, how to apply it, and what protective gear to wear. “In an increasingly diverse and global society, communication ergonomics (the study of human-centered design of communications) is desperately needed to reduce the hazards associated with products and systems and the additional problems introduced by poor information design,” Smith-Jackson said.

Examples of pesticide misuse include: using too much pesticide (either too strong of a concentration or applying it too often), using an outdoor pesticide indoors, failing to follow the restricted time for reentering an area after a pesticide has been applied, or failing to wear the required safety gear, such as rubber gloves and eye goggles.

Farmers and pest managers need to be able to read and understand pesticide labels before even opening the container.

The research will improve the design of risk communications aimed at reducing or eliminating hazards related to pesticide exposures among ethnic minority farm workers, which in turn, is likely to apply to all farm workers regardless of ethnicity. Smith-Jackson and Wogalter are interviewing Latino and European-American farm workers on the use of pesticides and precautionary behavior when working on farms. The farmers being interviewed are working at peanut and fruit farms in Giles County, Va., Wake County, N.C., and Orange County, N.C.

The research project combines the disciplines of engineering, psychology, and cultural anthropology. The risk perception of migrant and seasonal farm workers who are language- and ethnic-minorities will be compared to non-minority farm workers. It is expected that even non-minority farm workers will have problems with pesticide labeling.

User-centered design guidelines for pesticide warning labels will be developed and an evaluation of usability and effectiveness will be conducted. User requirements and design specifications will be developed and disseminated to risk communication manufacturers, employers, health educators, safety and training groups, minority-serving agencies, and community-based advocacy and education groups.


Smith-Jackson’s research is in collaboration with the Southeastern Regional Agromedicine Center in Greenville, N.C. Graduate students assisting with this research include Yvette Quintela, an M.S. student in psychology at Virginia Tech, and Ray Lim and Eric Shaver, Ph.D. students in psychology at N.C. State. Smith-Jackson is the director of the Assessment and Cognitive Ergonomics (ACE) Lab at Virginia Tech (http://ace.ise.vt.edu). For more information, contact Smith-Jackson at smithjack@vt.edu.

PR CONTACT: Karen Gilert 540-231-4787 karen.gilbert@vt.edu

Tonya Smith-Jackson | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>