Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant pathologists find growing number of plants affected by sudden oak death

08.04.2003


The newly discovered disease, Sudden Oak Death (SOD), is quickly gaining a reputation, and it’s not a good one. SOD is tenacious and lethal, using as many as 26 different plants as hosts and spreading in ways scientists don’t completely understand. Now, recent research suggests that SOD is capable of using an even greater number of host plants than previously thought. While this is not necessarily good news, it does help shed light on why SOD has been so quick to spread.



"SOD is deadly for oaks and it’s impacting many other species as well," states Matteo Garbelotto, an extension forest pathologist and adjunct professor at the University of California, Berkeley, and a leading researcher on SOD. Not long after the isolation of the microbe causing SOD by U. C. Davis Professor Dave Rizzo in 2000, plant pathologists began to suspect that while oaks were the direct victims of the disease, other plants were involved in spreading it. Plants from the rhododendron family were among the first host plants identified. "What we hypothesized and what we’re now confirming," says Garbelotto, "is that SOD is not spreading via the oaks, but is instead using a huge range of native plants for reproduction."

In fact, research by Garbelotto and Rizzo indicates that nearly all of the main tree species in California’s forests, as well as forest shrubbery and undergrowth, may act as hosts for SOD. SOD appears to use the leaves, branches and stems of these plants to reproduce, resulting in lesions and leaf discoloration. It doesn’t kill the host plant outright, but scientists say repeated SOD infections are likely to weaken the plant over time, negatively impacting its growth and making it susceptible to other diseases and insects.


And the more host plants SOD is able to use, the greater its potential impact on California’s forests and ecosystems. Says Garbelotto, "SOD’s reproductive strategy may make it able to persist indefinitely in infested forests and may affect the success of future regeneration and restoration efforts." While these new developments are worrisome, they are not without hope. "The more we know about how SOD is spreading, the greater the chances for finding a way to control it," says Garbelotto.


And there is great news for those interested in learning more. Those working on the front lines of SOD will be sharing what they know, what they don’t know, and what they hope to learn when they convene for a special online meeting and discussion forum, "Sudden Oak Death – How Concerned Should You Be?" April 21 - May 4, 2003 at http://sod.apsnet.org. It’s free and anyone with an interest in SOD is invited to participate.

There is also a full report on the recent research by Garbelotto and his colleagues on APS’s website at www.apsnet.org. The American Phytopathological Society (APS) is a professional scientific organization dedicated to the study and control of plant diseases with 5,000 members worldwide.

Cindy Ash | EurekAlert!
Further information:
http://www.apsnet.org/

More articles from Agricultural and Forestry Science:

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

nachricht Mixed forests: ecologically and economically superior
09.05.2018 | Technische Universität München

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>