Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant pathologists find growing number of plants affected by sudden oak death

08.04.2003


The newly discovered disease, Sudden Oak Death (SOD), is quickly gaining a reputation, and it’s not a good one. SOD is tenacious and lethal, using as many as 26 different plants as hosts and spreading in ways scientists don’t completely understand. Now, recent research suggests that SOD is capable of using an even greater number of host plants than previously thought. While this is not necessarily good news, it does help shed light on why SOD has been so quick to spread.



"SOD is deadly for oaks and it’s impacting many other species as well," states Matteo Garbelotto, an extension forest pathologist and adjunct professor at the University of California, Berkeley, and a leading researcher on SOD. Not long after the isolation of the microbe causing SOD by U. C. Davis Professor Dave Rizzo in 2000, plant pathologists began to suspect that while oaks were the direct victims of the disease, other plants were involved in spreading it. Plants from the rhododendron family were among the first host plants identified. "What we hypothesized and what we’re now confirming," says Garbelotto, "is that SOD is not spreading via the oaks, but is instead using a huge range of native plants for reproduction."

In fact, research by Garbelotto and Rizzo indicates that nearly all of the main tree species in California’s forests, as well as forest shrubbery and undergrowth, may act as hosts for SOD. SOD appears to use the leaves, branches and stems of these plants to reproduce, resulting in lesions and leaf discoloration. It doesn’t kill the host plant outright, but scientists say repeated SOD infections are likely to weaken the plant over time, negatively impacting its growth and making it susceptible to other diseases and insects.


And the more host plants SOD is able to use, the greater its potential impact on California’s forests and ecosystems. Says Garbelotto, "SOD’s reproductive strategy may make it able to persist indefinitely in infested forests and may affect the success of future regeneration and restoration efforts." While these new developments are worrisome, they are not without hope. "The more we know about how SOD is spreading, the greater the chances for finding a way to control it," says Garbelotto.


And there is great news for those interested in learning more. Those working on the front lines of SOD will be sharing what they know, what they don’t know, and what they hope to learn when they convene for a special online meeting and discussion forum, "Sudden Oak Death – How Concerned Should You Be?" April 21 - May 4, 2003 at http://sod.apsnet.org. It’s free and anyone with an interest in SOD is invited to participate.

There is also a full report on the recent research by Garbelotto and his colleagues on APS’s website at www.apsnet.org. The American Phytopathological Society (APS) is a professional scientific organization dedicated to the study and control of plant diseases with 5,000 members worldwide.

Cindy Ash | EurekAlert!
Further information:
http://www.apsnet.org/

More articles from Agricultural and Forestry Science:

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

nachricht New rice fights off drought
04.04.2017 | RIKEN

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>