Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant pathologists find growing number of plants affected by sudden oak death

08.04.2003


The newly discovered disease, Sudden Oak Death (SOD), is quickly gaining a reputation, and it’s not a good one. SOD is tenacious and lethal, using as many as 26 different plants as hosts and spreading in ways scientists don’t completely understand. Now, recent research suggests that SOD is capable of using an even greater number of host plants than previously thought. While this is not necessarily good news, it does help shed light on why SOD has been so quick to spread.



"SOD is deadly for oaks and it’s impacting many other species as well," states Matteo Garbelotto, an extension forest pathologist and adjunct professor at the University of California, Berkeley, and a leading researcher on SOD. Not long after the isolation of the microbe causing SOD by U. C. Davis Professor Dave Rizzo in 2000, plant pathologists began to suspect that while oaks were the direct victims of the disease, other plants were involved in spreading it. Plants from the rhododendron family were among the first host plants identified. "What we hypothesized and what we’re now confirming," says Garbelotto, "is that SOD is not spreading via the oaks, but is instead using a huge range of native plants for reproduction."

In fact, research by Garbelotto and Rizzo indicates that nearly all of the main tree species in California’s forests, as well as forest shrubbery and undergrowth, may act as hosts for SOD. SOD appears to use the leaves, branches and stems of these plants to reproduce, resulting in lesions and leaf discoloration. It doesn’t kill the host plant outright, but scientists say repeated SOD infections are likely to weaken the plant over time, negatively impacting its growth and making it susceptible to other diseases and insects.


And the more host plants SOD is able to use, the greater its potential impact on California’s forests and ecosystems. Says Garbelotto, "SOD’s reproductive strategy may make it able to persist indefinitely in infested forests and may affect the success of future regeneration and restoration efforts." While these new developments are worrisome, they are not without hope. "The more we know about how SOD is spreading, the greater the chances for finding a way to control it," says Garbelotto.


And there is great news for those interested in learning more. Those working on the front lines of SOD will be sharing what they know, what they don’t know, and what they hope to learn when they convene for a special online meeting and discussion forum, "Sudden Oak Death – How Concerned Should You Be?" April 21 - May 4, 2003 at http://sod.apsnet.org. It’s free and anyone with an interest in SOD is invited to participate.

There is also a full report on the recent research by Garbelotto and his colleagues on APS’s website at www.apsnet.org. The American Phytopathological Society (APS) is a professional scientific organization dedicated to the study and control of plant diseases with 5,000 members worldwide.

Cindy Ash | EurekAlert!
Further information:
http://www.apsnet.org/

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

NASA Protects its super heroes from space weather

17.08.2017 | Physics and Astronomy

Spray-on electric rainbows: Making safer electrochromic inks

17.08.2017 | Materials Sciences

Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>