Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Organic practices slightly affect corn and soybean yields


Scientists from the University of Minnesota demonstrated yields of corn and soybeans were only minimally reduced when organic production practices were utilized as compared with conventional production practices. After factoring in production costs, net returns between the two production strategies were equivalent.

More than 80% of corn and soybeans produced in the United States is grown in the Midwest, the vast majority with conventional production practices in a corn-soybean rotation requiring annual synthetic fertilizer and pesticide application. This corn-soybean rotation is practiced on over 100 million acres.

Organic production practices, in compliance with standards defined by the United States Department of Agriculture’s National Organic Program (NOP), offer an alternative production system to conventional practices. The study of the influence of rotation length on yield of corn and soybean when grown utilizing organic and conventional production practices is published in the March-April, 2003 issue of Agronomy Journal, a publication of the American Society of Agronomy.

The study was conducted at two Minnesota locations from 1989 to 1999. Scientists evaluated a two-year corn-soybean rotation and a four-year corn-soybean-oat/alfalfa-alfalfa rotation under conventional and organic management and production strategies.

The analysis of yield data began in 1993, after the first complete cycle of the four-year rotation had occurred. From 1993 through 1999, yield of corn grown in the conventional two-year rotation averaged 143 and 139 bushels per acre at the two locations, while corn grown in the organic four-year rotation averaged nine percent and seven percent less, respectively.

During the same time frame, soybeans grown in the conventional two-year rotation averaged 43.1 and 40.7 bushels per acre, while organically produced soybeans averaged 19 percent and 16 percent less, respectively. Weed control was a major factor for the reduced yields in the organic production system, says Paul Porter, a University of Minnesota agronomist and co-author of the article. The larger yield reductions from organically produced soybeans relative to corn were associated with increased weed pressure in the soybean crop because of its placement in the rotation sequence.

While there was a reduction in both corn and soybean yields in the four-year organic strategy compared with the two-year conventional strategy, the organic strategy had lower production costs than the conventional strategy. Consequently, net returns for the two strategies were equivalent, without taking organic price premiums into account.

Conventionally produced soybeans were more responsive than conventionally produced corn to the expanded rotation length, Porter says. Whereas conventionally grown soybeans in the four-year rotation yielded three to six percent more than soybeans grown in the two-year rotation, conventionally grown corn in the four-year rotation yielded the same to four percent less than corn grown in the two-year rotation. These results suggest conventional soybean yields would be increased when grown in a longer rotation than the commonly practiced two-year corn-soybean rotation.

Agronomy Journal, is a peer-reviewed, international journal of agriculture and natural resource sciences published six times a year by the American Society of Agronomy (ASA). Agronomy Journal contains research papers on all aspects of crop and soil science including resident education, military land use and management, agroclimatology and agronomic modeling, extension education, environmental quality, international agronomy, agricultural research station management, and integrated agricultural systems.

The American Society of Agronomy (ASA), the Crop Science Society of America (CSSA) and the Soil Science Society of America (SSSA) are educational organizations helping their 10,000+ members advance the disciplines and practices of agronomy, crop and soil sciences by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Paul Porter | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>