Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biotech regulations impede crop domestication

04.04.2003


An increasing amount of genetic engineering in agriculture closely resembles the conventional crop breeding that has been done for thousands of years, and unnecessarily stringent regulation of this type of gene research is choking off its usefulness, one expert says in a new policy forum in Science.



Government regulations that lump all types of genetic engineering together, instead of making reasonable distinctions between differing technologies, is stifling research, favors the efforts of large and wealthy corporations, and does little or nothing to protect the public safety, says Steven Strauss, a professor of forest science at Oregon State University.

In a policy report to be published Friday in Science, one of the leading international journals of scientific research, Strauss argues that the time has come to dramatically reduce the level of government regulations when genetic engineering is based on "native or homologous" genes, or those commonly found within related plant species.


This could free up the energies of small companies and university scientists to produce valuable new products, continue the green revolution into new areas, and can be done with very high levels of environmental safety, he said.

"For centuries with conventional crop breeding we created plants that never before existed in nature, and no one thought twice about it," Strauss said. "Now, as it becomes increasingly easier and less expensive to map out the genomes of different crop plants, we have an opportunity to make similar and more precisely designed types of changes with genetic engineering. But the current environment of regulations and oversight is making this almost impossible for all but large, wealthy companies."

In the early days of genetic engineering, Strauss said, it was in fact more common for very unusual genes to be inserted into a plant that never would have naturally contained such a trait – for instance, a gene for herbicide resistance into a corn plant. The advent of inexpensive genomic mapping has opened many new doors, he said.

"Now, it’s much more possible to take different genetic characteristics of a grain crop, for instance, and pinpoint the traits you want to turn on or off, create different types of crops with improved characteristics," Strauss said.

"Conceptually, this is the same thing we’ve been doing on a hit-or-miss basis with conventional crop breeding for centuries," he said. "For instance, creating crops that grew faster, were more nutritious or had seedless fruits. But now we can target our goals much more specifically and achieve the types of products we’re looking for much more quickly."

When this is all being done within the same plant or closely related species, Strauss said, history suggests that it poses virtually no environmental hazard, and there’s no need to make such a dramatic distinction between crops created with conventional breeding or those created with genetic engineering.

Many of the types of traits selected for agricultural purposes, such as dwarf fruit trees, seedless fruits or male-sterile hybrids, often have little in the way of competitive survival value in a natural environment, Strauss said, and thus pose very little danger of "invading" ecosystems. But decades of work with conventional crop breeding has shown that even plants with some types of increased survival value on farms, such as improved pest tolerance, have no increased success in invading a wild ecosystem.

Right now, Strauss said, government agencies regulate all genetically modified organisms, or GMOs, pretty much the same – a plant that has been genetically engineered to grow shorter faces similar regulatory hurdles as a plant that has been genetically engineered to produce a novel protein. This ignores the widely different potential that two different GMOs may have for the risks people are genuinely concerned about – nutritional safety, invasive potential or secondary ecological impacts.

"The net effect of this stringent regulatory environment is that many incremental advances in crop research are not being pursued, and the field tests needed to determine value to farmers and society are often avoided," Strauss said. "It’s too expensive, risky and complex, especially for small companies and academic researchers."

A better approach, Strauss said in the report, would be for the USDA’s Animal and Plant Health Inspection Service to make some initial evaluations of the type of changes being done with genetic engineering and the nature of the genes being changed. They could then inject a little common sense and much less regulation into the process if it becomes clear that a project has a similar level of environmental safety to conventional crop breeding. After review, he said, some types of field tests should be exempt from further regulation.

Another effect of the current regulatory environment, Strauss argues, is to largely force out of business all but the largest and most powerful companies that can afford the costly field tests.

"Small companies and academic scientists have much they could contribute to this field, and the cumulative public benefits could be enormous, but the costs are often just too overwhelming for them," Strauss said. "We need to democratize this industry, and we need to start delivering to the public the benefits of biotechnology on a wider basis."

Strauss is an international leader in the use of genetic engineering in trees and has taught classes on biotechnology issues in society.

Steven Strauss | EurekAlert!
Further information:
http://www.orst.edu/

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>