Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biotech regulations impede crop domestication

04.04.2003


An increasing amount of genetic engineering in agriculture closely resembles the conventional crop breeding that has been done for thousands of years, and unnecessarily stringent regulation of this type of gene research is choking off its usefulness, one expert says in a new policy forum in Science.



Government regulations that lump all types of genetic engineering together, instead of making reasonable distinctions between differing technologies, is stifling research, favors the efforts of large and wealthy corporations, and does little or nothing to protect the public safety, says Steven Strauss, a professor of forest science at Oregon State University.

In a policy report to be published Friday in Science, one of the leading international journals of scientific research, Strauss argues that the time has come to dramatically reduce the level of government regulations when genetic engineering is based on "native or homologous" genes, or those commonly found within related plant species.


This could free up the energies of small companies and university scientists to produce valuable new products, continue the green revolution into new areas, and can be done with very high levels of environmental safety, he said.

"For centuries with conventional crop breeding we created plants that never before existed in nature, and no one thought twice about it," Strauss said. "Now, as it becomes increasingly easier and less expensive to map out the genomes of different crop plants, we have an opportunity to make similar and more precisely designed types of changes with genetic engineering. But the current environment of regulations and oversight is making this almost impossible for all but large, wealthy companies."

In the early days of genetic engineering, Strauss said, it was in fact more common for very unusual genes to be inserted into a plant that never would have naturally contained such a trait – for instance, a gene for herbicide resistance into a corn plant. The advent of inexpensive genomic mapping has opened many new doors, he said.

"Now, it’s much more possible to take different genetic characteristics of a grain crop, for instance, and pinpoint the traits you want to turn on or off, create different types of crops with improved characteristics," Strauss said.

"Conceptually, this is the same thing we’ve been doing on a hit-or-miss basis with conventional crop breeding for centuries," he said. "For instance, creating crops that grew faster, were more nutritious or had seedless fruits. But now we can target our goals much more specifically and achieve the types of products we’re looking for much more quickly."

When this is all being done within the same plant or closely related species, Strauss said, history suggests that it poses virtually no environmental hazard, and there’s no need to make such a dramatic distinction between crops created with conventional breeding or those created with genetic engineering.

Many of the types of traits selected for agricultural purposes, such as dwarf fruit trees, seedless fruits or male-sterile hybrids, often have little in the way of competitive survival value in a natural environment, Strauss said, and thus pose very little danger of "invading" ecosystems. But decades of work with conventional crop breeding has shown that even plants with some types of increased survival value on farms, such as improved pest tolerance, have no increased success in invading a wild ecosystem.

Right now, Strauss said, government agencies regulate all genetically modified organisms, or GMOs, pretty much the same – a plant that has been genetically engineered to grow shorter faces similar regulatory hurdles as a plant that has been genetically engineered to produce a novel protein. This ignores the widely different potential that two different GMOs may have for the risks people are genuinely concerned about – nutritional safety, invasive potential or secondary ecological impacts.

"The net effect of this stringent regulatory environment is that many incremental advances in crop research are not being pursued, and the field tests needed to determine value to farmers and society are often avoided," Strauss said. "It’s too expensive, risky and complex, especially for small companies and academic researchers."

A better approach, Strauss said in the report, would be for the USDA’s Animal and Plant Health Inspection Service to make some initial evaluations of the type of changes being done with genetic engineering and the nature of the genes being changed. They could then inject a little common sense and much less regulation into the process if it becomes clear that a project has a similar level of environmental safety to conventional crop breeding. After review, he said, some types of field tests should be exempt from further regulation.

Another effect of the current regulatory environment, Strauss argues, is to largely force out of business all but the largest and most powerful companies that can afford the costly field tests.

"Small companies and academic scientists have much they could contribute to this field, and the cumulative public benefits could be enormous, but the costs are often just too overwhelming for them," Strauss said. "We need to democratize this industry, and we need to start delivering to the public the benefits of biotechnology on a wider basis."

Strauss is an international leader in the use of genetic engineering in trees and has taught classes on biotechnology issues in society.

Steven Strauss | EurekAlert!
Further information:
http://www.orst.edu/

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Existence of a new quasiparticle demonstrated

28.02.2017 | Materials Sciences

Sustainable ceramics without a kiln

28.02.2017 | Materials Sciences

Biofuel produced by microalgae

28.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>