Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hebrew University Research Brings Higher Peanut Yields


Significantly improved peanut yields have been achieved by researchers at the Hebrew University Faculty of Agricultural, Food and Environmental Sciences in Rehovot.

Increased peanut pod sizes
© Hebrew University

Through the use of the plant hormone ethylene, the researchers have succeeded in regulating the flowering of the peanut plant, with a resulting four-fold increase in the yield of large peanut pods at harvest time.

The research was carried out by Eliezer Zamski, the Jack Futterman Professor of Agricultural Botany at the Institute of Plant Sciences and Genetics in Agriculture at the Hebrew University, together with Zvi Bar of the Center for Research, Development and Training of the Maon District and Oran Bochshtav of Kibbutz Nirim.

Peanuts (Arachis hypogaea) are rich in protein and are an important product for man and industry. In Israel, some 33,000 dunams (8250acres) are devoted to peanut farming in the western Negev, the Sharon and the Galilee. The average yield is 500-600 kilograms per dunam. The period of growth is from 145-175 days, commencing in April.

Every peanut plant produces more than 400 flowers during the growth period, but in the end only about 35 of them ripen into peanut pods that are large enough to bring a top return on the market. In cash terms, the larger peanut pods (super giant) bring a return on the export market of $1,550 a ton, while the smaller peanuts (extra fancy) bring only about $1,100 a ton. Hence, regulating growth so that four times as many of the pods reach optimal market size – as has been achieved by Prof. Zamski and his associates -- has significant consequences for the farmer.

Jerry Barrach | Hebrew University

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>