Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungi found to be effective natural control agents

17.03.2003


A biological process using three different types of fungi to control common plant diseases and mite pests has been developed by researchers at the Hebrew University’s Faculty of Agricultural, Food and Environmental Quality Sciences in Rehovot.



Use of these fungi enables crops to overcome such plant diseases and pests without having to apply environmentally-polluting chemicals, said Abraham Sztejnberg, the Hebrew University’s Francis Ariowitsch Professor of Agriculture, a member of the research team. The fungi have been found to be effective in controlling plant mites (a pest relative of spiders) and powdery mildew diseases, both of which cause widespread damage to field crops, flowers and fruit trees.

Prof. Sztejnberg, born in Chile and a graduate of the Hebrew University, said billions of dollars are spent annually in developed countries for controlling mites and powdery mildews with chemical pesticides. Nevertheless, members of the two damage-causing groups have been able to develop resistance to these counter-measures, making it necessary to often change the pesticides – thus adding even more to the costs.


The effectiveness of the three fungi was discovered in joint research involving scientists at the Hebrew University and others in Holland and Florida. Prof. Steinberg, of the Hebrew University’s Department of Plant Pathology and Microbiology heads the team, which also includes, from the Hebrew University, Prof. Uri Gerson of the Department of Entomology, Aviva Gafni and Zahi Paz. The foreign participants were Dr. Teun Boekhout of the Centraal Bureau voor Schimmelcultures, Utrecht, Holland, and Dr. G. Scorzetti of the Rosenstiel School of Marine and Atmospheric Sciences, Key Biscayne, Florida.

The fungi used by the scientists are newly-discovered genera and species which have only recently become known to scientists. They are natural entities that have not been transformed by genetic engineering. They were identified by morphological, biochemical and molecular biology techniques. Their unique anti-mite and anti-powdery mildew qualities were demonstrated in laboratory and field work

The importance of the discovery lies in the fact that this is a biological means of plant disease and pest control which does not cause environmental damage to the soil, say the scientists. The development is the outgrowth of a long-term research project, including a master’s degree project carried out by Hebrew University student Zachi Paz, under the supervision of Professors Sztejnberg and Gerson.

A report on the research will appear in the July 2003 issue of the International Journal of Systematic and Evolutionary Microbiology.

The research is continuing, and many additional aspects are being explored. A patent has been applied for through the Yissum Research Development Company of the Hebrew University, and business contacts have been made with a view to commercialization.

Jerry Barrach | Hebrew University

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>