Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungi found to be effective natural control agents

17.03.2003


A biological process using three different types of fungi to control common plant diseases and mite pests has been developed by researchers at the Hebrew University’s Faculty of Agricultural, Food and Environmental Quality Sciences in Rehovot.



Use of these fungi enables crops to overcome such plant diseases and pests without having to apply environmentally-polluting chemicals, said Abraham Sztejnberg, the Hebrew University’s Francis Ariowitsch Professor of Agriculture, a member of the research team. The fungi have been found to be effective in controlling plant mites (a pest relative of spiders) and powdery mildew diseases, both of which cause widespread damage to field crops, flowers and fruit trees.

Prof. Sztejnberg, born in Chile and a graduate of the Hebrew University, said billions of dollars are spent annually in developed countries for controlling mites and powdery mildews with chemical pesticides. Nevertheless, members of the two damage-causing groups have been able to develop resistance to these counter-measures, making it necessary to often change the pesticides – thus adding even more to the costs.


The effectiveness of the three fungi was discovered in joint research involving scientists at the Hebrew University and others in Holland and Florida. Prof. Steinberg, of the Hebrew University’s Department of Plant Pathology and Microbiology heads the team, which also includes, from the Hebrew University, Prof. Uri Gerson of the Department of Entomology, Aviva Gafni and Zahi Paz. The foreign participants were Dr. Teun Boekhout of the Centraal Bureau voor Schimmelcultures, Utrecht, Holland, and Dr. G. Scorzetti of the Rosenstiel School of Marine and Atmospheric Sciences, Key Biscayne, Florida.

The fungi used by the scientists are newly-discovered genera and species which have only recently become known to scientists. They are natural entities that have not been transformed by genetic engineering. They were identified by morphological, biochemical and molecular biology techniques. Their unique anti-mite and anti-powdery mildew qualities were demonstrated in laboratory and field work

The importance of the discovery lies in the fact that this is a biological means of plant disease and pest control which does not cause environmental damage to the soil, say the scientists. The development is the outgrowth of a long-term research project, including a master’s degree project carried out by Hebrew University student Zachi Paz, under the supervision of Professors Sztejnberg and Gerson.

A report on the research will appear in the July 2003 issue of the International Journal of Systematic and Evolutionary Microbiology.

The research is continuing, and many additional aspects are being explored. A patent has been applied for through the Yissum Research Development Company of the Hebrew University, and business contacts have been made with a view to commercialization.

Jerry Barrach | Hebrew University

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>