Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New GIS Tool Helps Foresters Curb Damage from Wildfires and Target Conservation Cost-Effectively

07.03.2003


A robust, new geographic information systems (GIS) software tool developed by a University at Buffalo geographer is helping the U.S. Forest Service to more quickly and accurately assess and contain the devastation wrought by forest fires, such as last summer’s Hayman Fire, Colorado’s worst wildfire ever. That fire, which covered more than 137,000 acres and blazed for more than two weeks, destroyed 133 homes and caused damage of approximately $39 million.



The new tool, to be presented in New Orleans on Thursday (March 6, 2003) at the annual meeting of the Association of American Geographers, modifies a computer model developed originally by the U.S. Agricultural Research Service that is used to assess soil erosion in agricultural areas.

"Last year’s devastating forest-fire season has prompted forest, wildlife and watershed managers to call for better ways of rapidly assessing how fires have impacted soil erosion and sediment delivery in streams," said Chris Renschler, Ph.D., assistant professor of geography in the UB College of Arts and Sciences.


"Right after a fire, landslides, avalanches and mud flows are not uncommon," he explained, "because the upper layer of the soil may become water-repellant and is most vulnerable to being washed away by increased runoff from rainfall or snow melt."

This surface runoff, he added, can be anywhere from 10 to 100 times greater than in an undisturbed forest, potentially threatening camp and recreation sites, residential areas and drinking-water sources.

"Ideally, in order to reduce this risk, watershed managers need to quickly plan and implement soil and water conservation measures," Renschler said. "But determining which areas are most vulnerable to damage has been a tedious and labor-intensive process."

Typically, Burned Area Emergency Rehabilitation teams are dispatched into the field to determine the distribution of severely burned areas and to evaluate watersheds at risk. These Forest Service personnel then return to their offices to combine these field observations with satellite and aerial imagery, soil maps, topographic data and climate information to estimate the erosion potential.

Renschler’s tool, called GeoWEPP (Geo-spatial interface for the Water Erosion Prediction Project), potentially can condense this entire process into a couple of steps, all done at the computer, with a minimum of additional fieldwork.

It does so by taking advantage of GIS data, topographic data, soil and land cover, and remote sensing data gathered by satellite available on the Internet from federal-government Web sites.

"GeoWEPP estimates the runoff and erosion processes that have occurred or may occur in the years following the fire as a result of the fire and any mitigation measures," explained Renschler.

"It allows forest personnel to complete quickly the initial assessments on the computer, identifying the areas that are most likely to be vulnerable to erosion," said William Elliot, Ph.D., project leader for soil and water engineering with the U.S. Forest Service at the Rocky Mountain Research Station in Moscow, Idaho, which is funding Renschler’s work. Elliot is collaborating with Renschler to customize and test GeoWEPP.

Once these determinations have been made, GeoWEPP can "guide" the user to select the best and most cost-effective conservation measures to implement, said Renschler.

"In this way, GeoWEPP significantly shortens the time period for analysis before the BAER teams can start implementing conservation measures on the most sensitive areas," he said.

In addition, he said, it allows managers to target expensive treatments only on areas most susceptible to erosion. The cost of such mitigation measures on Forest Service lands following the Hayman Fire, for example, exceeds $14 million to date.

"With GeoWEPP, we have created a user-friendly interface for natural-resource managers to take full advantage of GIS capabilities and data now available on the Web," said Renschler. "The challenge was to make complicated computer models and analysis tools more usable both by managers and even members of the public."

GeoWEPP can be downloaded from Renschler’s Web site at http://www.geog.buffalo.edu/~rensch/geowepp.

Renschler’s previous work on GeoWEPP for agricultural sites was funded by the U.S. Department of Agriculture, National Soil Erosion Laboratory and Purdue University.

Ellen Goldbaum | University at Buffalo
Further information:
http://www.geog.buffalo.edu/~rensch/geowepp
http://www.buffalo.edu/news/fast-execute.cgi/article-page.html?article=61140009

More articles from Agricultural and Forestry Science:

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

nachricht Ecological intensification of agriculture
09.09.2016 | Julius-Maximilians-Universität Würzburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>