Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New GIS Tool Helps Foresters Curb Damage from Wildfires and Target Conservation Cost-Effectively

07.03.2003


A robust, new geographic information systems (GIS) software tool developed by a University at Buffalo geographer is helping the U.S. Forest Service to more quickly and accurately assess and contain the devastation wrought by forest fires, such as last summer’s Hayman Fire, Colorado’s worst wildfire ever. That fire, which covered more than 137,000 acres and blazed for more than two weeks, destroyed 133 homes and caused damage of approximately $39 million.



The new tool, to be presented in New Orleans on Thursday (March 6, 2003) at the annual meeting of the Association of American Geographers, modifies a computer model developed originally by the U.S. Agricultural Research Service that is used to assess soil erosion in agricultural areas.

"Last year’s devastating forest-fire season has prompted forest, wildlife and watershed managers to call for better ways of rapidly assessing how fires have impacted soil erosion and sediment delivery in streams," said Chris Renschler, Ph.D., assistant professor of geography in the UB College of Arts and Sciences.


"Right after a fire, landslides, avalanches and mud flows are not uncommon," he explained, "because the upper layer of the soil may become water-repellant and is most vulnerable to being washed away by increased runoff from rainfall or snow melt."

This surface runoff, he added, can be anywhere from 10 to 100 times greater than in an undisturbed forest, potentially threatening camp and recreation sites, residential areas and drinking-water sources.

"Ideally, in order to reduce this risk, watershed managers need to quickly plan and implement soil and water conservation measures," Renschler said. "But determining which areas are most vulnerable to damage has been a tedious and labor-intensive process."

Typically, Burned Area Emergency Rehabilitation teams are dispatched into the field to determine the distribution of severely burned areas and to evaluate watersheds at risk. These Forest Service personnel then return to their offices to combine these field observations with satellite and aerial imagery, soil maps, topographic data and climate information to estimate the erosion potential.

Renschler’s tool, called GeoWEPP (Geo-spatial interface for the Water Erosion Prediction Project), potentially can condense this entire process into a couple of steps, all done at the computer, with a minimum of additional fieldwork.

It does so by taking advantage of GIS data, topographic data, soil and land cover, and remote sensing data gathered by satellite available on the Internet from federal-government Web sites.

"GeoWEPP estimates the runoff and erosion processes that have occurred or may occur in the years following the fire as a result of the fire and any mitigation measures," explained Renschler.

"It allows forest personnel to complete quickly the initial assessments on the computer, identifying the areas that are most likely to be vulnerable to erosion," said William Elliot, Ph.D., project leader for soil and water engineering with the U.S. Forest Service at the Rocky Mountain Research Station in Moscow, Idaho, which is funding Renschler’s work. Elliot is collaborating with Renschler to customize and test GeoWEPP.

Once these determinations have been made, GeoWEPP can "guide" the user to select the best and most cost-effective conservation measures to implement, said Renschler.

"In this way, GeoWEPP significantly shortens the time period for analysis before the BAER teams can start implementing conservation measures on the most sensitive areas," he said.

In addition, he said, it allows managers to target expensive treatments only on areas most susceptible to erosion. The cost of such mitigation measures on Forest Service lands following the Hayman Fire, for example, exceeds $14 million to date.

"With GeoWEPP, we have created a user-friendly interface for natural-resource managers to take full advantage of GIS capabilities and data now available on the Web," said Renschler. "The challenge was to make complicated computer models and analysis tools more usable both by managers and even members of the public."

GeoWEPP can be downloaded from Renschler’s Web site at http://www.geog.buffalo.edu/~rensch/geowepp.

Renschler’s previous work on GeoWEPP for agricultural sites was funded by the U.S. Department of Agriculture, National Soil Erosion Laboratory and Purdue University.

Ellen Goldbaum | University at Buffalo
Further information:
http://www.geog.buffalo.edu/~rensch/geowepp
http://www.buffalo.edu/news/fast-execute.cgi/article-page.html?article=61140009

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>