Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With toxic crystals, bacterium targets - and takes out nematodes

06.03.2003


Long-time farmers’ friend shows promise against parasitic worms



Roundworms, hookworms, watch out. Scientists this week announced that a soil bacterium’s crystal proteins, long an effective weapon against many insect pests, are toxic to some nematodes, too.

The crystal proteins - created by some strains of Bacillus thuringiensis, more commonly known as Bt - thwart the development of some nematodes and kill others outright. The findings raise the possibility that these proteins might one day be used to combat parasitic worms that infect nearly one-fourth of the world’s human population. Nematodes - unsegmented, long, round worms pointed at both ends - are responsible for illnesses that can lead to elephantiasis of the limbs, intestinal lesions, a type of meningitis and "river blindness."


Led by biologist Raffi V. Aroian of the University of California San Diego, a team of researchers examined the impact of seven different Bt toxins upon six different nematode species, including one intestinal parasite. Funded by the National Science Foundation (NSF), the research appears in the March 4 journal Proceedings of the National Academy of Sciences (PNAS) and is available in the journal’s online "early edition" at www.pnas.org.

The crystals, of which there are many variations, form from the aggregation of proteins that are produced as the bacillus makes spores. Individually, their toxicity is very species-specific, and more than 150 insect species are known to be susceptible to one type of Bt crystal or another. However, the crystals are harmless to humans and to natural enemies of many crop pests.

(For more about Bacillus thuringiensis, visit the Aroian lab’s web site at www.btcrystal.org.)

Nematodes, relatively simple anatomically and genetically, are found in nearly every environment. Among the more than 100,000 known species are plant parasites, such as roundworms; animal parasites, such as hookworms and heartworms; and insect pathogens. Most are shorter than short-grained rice. Some, particularly those found in the relative comfort of another organism’s gut, can reach lengths of several meters, including one in sperm whales that measures upwards of 13 meters long. Many feed on bacteria.

Applying an array of crystal proteins from Bt to a diverse group of five small, free-living nematodes, Aroian’s group found that each worm species tested was susceptible to at least one of the toxins. The scientists also found that three of the Bt crystals were effective in crippling the free-living stage of a worm (Nippostrongylus brasiliensis) that spends its parasitic days in rats’ guts.

Represented in the study were two "largely unstudied classes of crystal proteins," one of which is closely related to those long in use as organic insecticides. Their effectiveness known for nearly a century and first approved for use in the United States in 1961, these Bt insecticides kill crop-killing caterpillars and beetles, and disease-transmitting black flies and mosquitoes.

According to the PNAS report, "The success of these toxins is due in large part to their high toxicity towards insects but no/low toxicity toward other animals. They have an excellent track record in over 50 years of use by organic and conventional farmers."

The researchers found that the Bt crystal proteins’ "toxicity in nematodes correlates with damage to the intestine, consistent with the mechanism of crystal toxin action in insects," leading them to question whether the worms, not insects, may be the natural primary target of the soil-dwelling bacterium’s toxin.

"It is puzzling why a bacterium that is so ubiquitously found in the soil might have evolved ingestible toxins to target insects that may spend little time feeding in the soil," they write. "On the other hand, there are estimated to be more than 100,000 species of nematodes, many of which live in the soil and ingest bacteria. Could nematodes be a prime target for Bt and its crystal proteins?"

According to Rita Teutonica, a genetics program director at NSF, "This report complements Aroian’s current exploration into the genetics of resistance to Bt toxins in the nematode Caenorhabditis elegans (a widely used model organism for research). More broadly, it also illustrates how inquiries into basic genetic mechanisms may ultimately lead to answers with profound worldwide benefits."

NSF Science Expert:
Rita Teutonico
Phone:(703) 732-8439
Email: rteutoni@nsf.gov

Sean Kearns | NSF
Further information:
http://www.pnas.org.
http://www.btcrystal.org.

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>