Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With toxic crystals, bacterium targets - and takes out nematodes

06.03.2003


Long-time farmers’ friend shows promise against parasitic worms



Roundworms, hookworms, watch out. Scientists this week announced that a soil bacterium’s crystal proteins, long an effective weapon against many insect pests, are toxic to some nematodes, too.

The crystal proteins - created by some strains of Bacillus thuringiensis, more commonly known as Bt - thwart the development of some nematodes and kill others outright. The findings raise the possibility that these proteins might one day be used to combat parasitic worms that infect nearly one-fourth of the world’s human population. Nematodes - unsegmented, long, round worms pointed at both ends - are responsible for illnesses that can lead to elephantiasis of the limbs, intestinal lesions, a type of meningitis and "river blindness."


Led by biologist Raffi V. Aroian of the University of California San Diego, a team of researchers examined the impact of seven different Bt toxins upon six different nematode species, including one intestinal parasite. Funded by the National Science Foundation (NSF), the research appears in the March 4 journal Proceedings of the National Academy of Sciences (PNAS) and is available in the journal’s online "early edition" at www.pnas.org.

The crystals, of which there are many variations, form from the aggregation of proteins that are produced as the bacillus makes spores. Individually, their toxicity is very species-specific, and more than 150 insect species are known to be susceptible to one type of Bt crystal or another. However, the crystals are harmless to humans and to natural enemies of many crop pests.

(For more about Bacillus thuringiensis, visit the Aroian lab’s web site at www.btcrystal.org.)

Nematodes, relatively simple anatomically and genetically, are found in nearly every environment. Among the more than 100,000 known species are plant parasites, such as roundworms; animal parasites, such as hookworms and heartworms; and insect pathogens. Most are shorter than short-grained rice. Some, particularly those found in the relative comfort of another organism’s gut, can reach lengths of several meters, including one in sperm whales that measures upwards of 13 meters long. Many feed on bacteria.

Applying an array of crystal proteins from Bt to a diverse group of five small, free-living nematodes, Aroian’s group found that each worm species tested was susceptible to at least one of the toxins. The scientists also found that three of the Bt crystals were effective in crippling the free-living stage of a worm (Nippostrongylus brasiliensis) that spends its parasitic days in rats’ guts.

Represented in the study were two "largely unstudied classes of crystal proteins," one of which is closely related to those long in use as organic insecticides. Their effectiveness known for nearly a century and first approved for use in the United States in 1961, these Bt insecticides kill crop-killing caterpillars and beetles, and disease-transmitting black flies and mosquitoes.

According to the PNAS report, "The success of these toxins is due in large part to their high toxicity towards insects but no/low toxicity toward other animals. They have an excellent track record in over 50 years of use by organic and conventional farmers."

The researchers found that the Bt crystal proteins’ "toxicity in nematodes correlates with damage to the intestine, consistent with the mechanism of crystal toxin action in insects," leading them to question whether the worms, not insects, may be the natural primary target of the soil-dwelling bacterium’s toxin.

"It is puzzling why a bacterium that is so ubiquitously found in the soil might have evolved ingestible toxins to target insects that may spend little time feeding in the soil," they write. "On the other hand, there are estimated to be more than 100,000 species of nematodes, many of which live in the soil and ingest bacteria. Could nematodes be a prime target for Bt and its crystal proteins?"

According to Rita Teutonica, a genetics program director at NSF, "This report complements Aroian’s current exploration into the genetics of resistance to Bt toxins in the nematode Caenorhabditis elegans (a widely used model organism for research). More broadly, it also illustrates how inquiries into basic genetic mechanisms may ultimately lead to answers with profound worldwide benefits."

NSF Science Expert:
Rita Teutonico
Phone:(703) 732-8439
Email: rteutoni@nsf.gov

Sean Kearns | NSF
Further information:
http://www.pnas.org.
http://www.btcrystal.org.

More articles from Agricultural and Forestry Science:

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

nachricht Ecological intensification of agriculture
09.09.2016 | Julius-Maximilians-Universität Würzburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>