Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nitrogen may increase Bt levels in corn


Scientists study the affects of nitrogen fertilizer applied to corn hybrids

Scientists at the USDA-ARS, Jamie Whitten, Delta States Research Center in Stoneville, MS, have found that Bt concentrations in young corn plants are directly influenced by the amount of nitrogen fertilizer applied at planting. The research is published in the January-February 2003 issue of Agronomy Journal.

Hybrid corn cultivars genetically modified to have the Bt-producing gene synthesize special proteins that can kill the larva of certain corn insect pests, such as fall armyworm and southwestern cornborer. The Bt corn hybrids provide farmers with an alternative to avoid costly damage from feeding by these pests without the use of pesticides.

Two corn hybrids with different types of Bt toxin were used in the experiment. These hybrids were grown in pots in the greenhouse and two plantings were made. A common fertilizer used to grow corn, ammonium nitrate, was blended into the potting mixture prior to planting. Rates of fertilizer used in the experiment represented zero, low, normal, and high amounts of nitrogen used to grow corn. Pots were carefully watered to avoid leaching of the fertilizer during the experiment. When the plants had five fully extended leaves, sample tissues were taken to determine the Bt and nitrogen concentrations of the plant.

The levels of Bt toxin and total nitrogen in the plant steadily increased as the amount of nitrogen fertilizer increased. Both Bt hybrids responded the same to increasing levels of nitrogen fertilizer.

One of the two scientists who conducted the research, Dr. H. Arnold Bruns said, "The effectiveness of Bt hybrids to avoid insect damage may be dependent on the amount of nitrogen fertilizer applied to the crop early in the growing season. Further research will be necessary to determine if similar effects to Bt concentrations can be found in more mature corn. These findings could affect the way we manage nitrogen fertilizer applications to Bt hybrid corns".

Agronomy Journal, is a peer-reviewed, international journal of agriculture and natural resource sciences published six times a year by the American Society of Agronomy (ASA). Agronomy Journal contains research papers on the subjects of soil and plant relationships; crop science; soil science; crop, soil, pasture, and range management; integrated agricultural systems. turfgrass; agroclimatology and agronomic modeling; environmental quality; and integrated pest management.

The American Society of Agronomy (ASA), the Crop Science Society of America (CSSA) and the Soil Science Society of America (SSSA) are educational organizations helping their 10,000+ members advance the disciplines and practices of agronomy, crop and soil sciences by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht “How trees coexist” – new findings from biodiversity research published in Nature Communications
22.03.2018 | Technische Universität Dresden

nachricht Earlier flowering of modern winter wheat cultivars
20.03.2018 | Georg-August-Universität Göttingen

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Generation of a Stable Biradical

22.03.2018 | Life Sciences

Scientists develop a room temperature maser to amplify weak signals

22.03.2018 | Life Sciences

Jacobs University supports new mapping of Mars, Mercury and the Moon

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>