Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Crop producers go high-tech with GPS technology


Global Positioning Systems prepare a digital map for precise soil acidity identification

A study conducted by Iowa State University soil scientists suggests Global Positioning Systems (GPS) available to corn and soybean producers can markedly improve the management of soil acidity and lime application. The research is published in the January/February 2003 issue of Agronomy Journal.

Soil acidity can limit plant growth, and due to soil formation processes and management practices, there exists large pH variability within producers’ fields. Lime often needs to be applied to maintain profitable crop production; however, traditional methods make it impractical to change lime application rates over a field. Producers usually apply a uniform rate although they recognize only a small proportion of the field receives the optimum application.

New technologies can change these situations. Global positioning systems (GPS) and advances in computer software allow for precise identification of soil sample positions in the field and improved soil-test mapping. Variable rate technology (VRT), which combines GPS, computer-based controllers, and digital soil-test maps, provides a practical way for applying desired lime rates over a field.

The study was conducted by Dr. Antonio Mallarino and graduate research assistant Agustin Bianchini in central Iowa during two years in one field and three years in another field, and received support from the Iowa Soybean Association and a local producer. The two fields had very high pH variability.

The study suggests that while a new zone soil sampling approach based on various information layers may not provide better information than the denser grid sampling approach used by many producers, it is less costly and adapts well to different field and economic conditions. Zone sampling uses a variety of information layers (such as yield maps, aerial crop canopy images, digitized soil survey maps, and electrical conductivity maps among others) to define sampling areas within a field.

The lime application portion of the study showed the VRT method resulted in more efficient lime management, reducing the lime need to 60% compared with the traditional uniform-rate application method and reduced soil pH variability.

Although the results showed no cost-effective sampling approach will completely alleviate the limitation of current VRT equipment to manage the small-scale pH variability existing in many fields, a combination of GPS, zone soil sampling, and VRT provides a reasonable and efficient management of soil acidity and lime application.

Agronomy Journal, is a peer-reviewed, international journal of agriculture and natural resource sciences published six times a year by the American Society of Agronomy (ASA). Agronomy Journal contains research papers on all aspects of crop and soil science including military land use and management, agroclimatology and agronomic modeling, environmental quality, international agronomy, agricultural research station management, and integrated agricultural systems.

The American Society of Agronomy (ASA), the Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA) are educational organizations helping their 10,000+ members advance the disciplines and practices of agronomy, crop and soil sciences by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>